Quantum Field Theory I: PHYS 721 [Fall 2021]


All problem sets are due on Tuesday December 7.

Course basics

Let's start by acknowledging that this could end up another strange and difficult semester. It is quite possible that the course will have to evolve as the semester progresses, and we'll have to try to adapt as best we can. We will have to work together with patience and understanding, because we will all be going through this for the first time together, but we will get through it! Please let me know if there is anything I can do to help you navigate the course, and the semester more generally.

We will work in an in-person mode, with two in-person classes each week. Much of the material is based on Schwartz's textbook Quantum Field Theory and the Standard Model, although you will also find Peskin and Schroeder's textbook, Quantum Field Theory (the student edition is available online through the library here [log-in required]), and David Tong's lecture notes [here]. My (hand written) notes will be available on this webpage to supplement the readings.

Course details

Class schedule: Our in-person class time will take place in Small Hall 235 on Tuesdays and Thursdays 11:00-12:20.

Textbook: The best textbook for this course is Schwartz's textbook Quantum Field Theory and the Standard Model. We will also be using David Tong's QFT lecture notes and Peskin and Shroeder's An Introduction to Quantum Field Theory (The student edition is available online through the library here [log-in required]). See the syllabus for a brief discussion of other textbooks and useful resources. There is a more extensive literature review by Flip Tanedo here [external link].

Prerequisites: Physics 622. Knowledge of quantum mechanics and special relativity.

Instructor: Chris Monahan (he/his/him), Small Hall 326C. Email: cjmonahan'at'wm.edu.

Course grading: Assessment will consist of weekly problem sets (60%) and a take-home final exam (40%). The class has voted! The final exam will be a take-home project, submitted in the style of a peer-reviewed article, written in LaTeX. Two of the problem sets will be replaced by a mini-project in the middle of the semester, to help familiarise everyone with the format and with using LaTeX.

Problem sets Problem sets will be posted here on Thursday mornings and are due at the start of the following Thursday class. All problem sets should be submitted by email. The first problem set will be posted Thursday September 9 and will be due Thursday September 16. I will drop the lowest grade on your weekly problem sets.

Office hours:Small 326C on Tuesdays 3-4 pm.

Course description

What is the Universe really made of? Are there new fundamental particles we haven't found yet? Just how cool is the Large Hadron Collider (LHC)?

Quantum field theory is the mathematical framework that underpins our attempts to answer these questions. Except for the third, for which the answer is obviously: very. Grappling with quantum field theory is key to understanding particle and nuclear physics, and much of condensed matter physics.

We will cover:


The preliminary syllabus can be found here (pdf).

Course materials

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Week 13

Week 14


The link below should take you to a PDF copy of the exam, due on Tuesday December 21 at 5 pm. The exam is graded out of sixty points.