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Chris Monahan

Overview

The questions in this problem set familiarise you with deriving Feynman rules from an example
of an interacting theory, and writing down Feynman diagrams corresponding to time-ordered
correlation functions. In many applications, this is a typical way to carry out calculations in QFT–
given a Lagrangian, you derive the Feynman rules, write the Feynman diagrams that correspond
to that process at a given order in perturbation theory (and then calculate the diagrams). There
are two questions.

Question 1 [12]

In our mini-lectures we derived the Feynman rules for λφ4 theory, which ended up being pretty
simple. In fact, it is usually possible to just read off the Feynman rules directly from the La-
grangian. Consider the following Lagrangian1,

L = 1
2∂µφ∂

µφ− 1
2m

2φ2 − λ

3!φ
3,

which defines the so-called λφ3 theory (very imaginatively named, as you can see).

(a) What is the mass dimension of the coupling λ in four spacetime dimensions? Is this coupling
relevant, marginal, or irrelevant in four spacetime dimensions? In how many spacetime dimensions
is λ dimensionless?

(b) Write out what you expect the relevant position-space Feynman rules to be. You do not need
to provide a detailed derivation via Wick’s theorem.

(c) Write out what you expect the relevant momentum-space Feynman rules to be. You do not
need to provide a detailed derivation.

(d) Draw all the connected diagrams contributing, up to and including O(λ2), to the:

(i) The two-point function
〈Ω|T{φ(x)φ(y)}|Ω〉.

(ii) The three-point function
〈Ω|T{φ(x)φ(y)φ(z)}|Ω〉.

(iii) The four-point function
〈Ω|T{φ(w)φ(x)φ(y)φ(z)}|Ω〉.

1Be aware! This is not exactly the same Lagrangian as we considered in class, or Schwartz Section 7.4!
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Figure 1: Position-space Feynman rules for the λφ3 theory.

Solution 1

(a) We know that the Lagrangian density must have dimension four, because the four-integral of
the Lagrangian density gives the action, which has units equal to ~ = 1. Therefore we deduce
that [φ] = 1, so [φ3] = 3. This means that for [λφ3] = 4, we must have [λ] = 1. Therefore this
coupling is relevant in four spacetime dimensions.

In an arbitrary spacetime dimension d, we have [φ] = (d − 2)/2 (because [m2φ2] = d), so [φ3] =
3(d− 2)/2. We want to find d such that [λ] = 0. Therefore, we need to solve

0 + 3(d− 2)
2 = d,

or d = 6. The coupling is dimensionless in six spacetime dimensions.

Note that the d-dimensional generalisation of the expression I used in class, λ/E4−n is not λ/Ed−n.
It is in fact λ/Ed−n/2(d−2). This follows from the fact that the field dimension is [φ] = (d− 2)/2.
One cannot assume [φ] = 1, since this holds in only four dimensions.

(b) The position space Feynman rules are shown in Fig. 1.

(c) The momentum space Feynman rules are shown in Fig. 2.

(d) Diagrams below.

(i) The diagrams contributing to the two-point function are shown in Fig. 3.

(ii) The diagrams contributing to the three-point function are shown in Fig. 4.

(iii) The diagrams contributing to the four-point function are shown in Fig. 5.
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Figure 2: Momentum-space Feynman rules for the λφ3 theory.

Figure 3: Connected diagrams contributing to the two-point function in the λφ3 theory.

Figure 4: Connected diagrams contributing to the three-point function in the λφ3 theory.



Figure 5: Connected diagrams contributing to the four-point function in the λφ3 theory.

Question 2 [8]

Consider scalar Yukawa theory, defined by the Lagrangian

L = ∂µψ
∗∂µψ −M2ψ∗ψ + 1

2∂µφ∂
µφ− 1

2m
2φ2 − gψ∗ψφ,

where ψ is a complex scalar field and φ is a real scalar field. Scalar Yukawa theory is a toy model
for the low energy interactions of hadrons, such as pions and neutrons and protons. In reality,
many hadrons are fermions, so the full Yukawa model (in which a scalar field couples to spinor
fields) is a more realistic representation of hadron interactions at low energy. As the energy of
the process increases, both of these models start to fail and the process must be calculated in the
full theory of the strong interaction, quantum chromodynamics (which governs the behaviour of
quarks and gluons within hadrons, and the interactions between hadrons).

(a) Draw the leading nontrivial (i.e. do not count the case of no scattering) Feynman diagrams
for the following processes, and express the invariant matrix element for each process in terms of
Mandelstam variables:

1. ψψ scattering, ψψ → ψψ;
2. ψψ∗ scattering, ψψ∗ → ψψ∗;
3. φ pair production, ψψ∗ → φφ;
4. ψφ scattering, ψφ→ ψφ.

(b) Draw the leading nontrivial (i.e. do not count the case of no scattering) Feynman diagrams
for the following processes:

1. φ decay, φ→ ψψ∗ (assuming m > 2M);
2. φφ scattering, φφ→ φφ.

Solution 2

(a) The Feynman diagrams for these processes, and those for part (b), appear in Fig. 6. The
invariant matrix elements for the processes in part (a) are

1. “Nucleon-nucleon” scattering,

iM = −ig2
[ 1
t−m2 + 1

u−m2

]
;
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Figure 6: Feynman diagrams that contribute to each of the processes listed in the bullet points one
to five, labelled by the appropriate number. Solid lines are ψ and ψ fields (“nucleons”
and “antinucleons”) and dashed lines are φ fields (“mesons”). The momenta in the right
hand diagrams are understood to be the same as in the left hand diagrams.



2. “Nucleon-antinucleon” scattering,

iM = −ig2
[ 1
t−m2 + 1

s−m2 + iε

]
;

3. “Meson” pair production,

iM = −ig2
[ 1
t−M2 + 1

u−M2

]
;

4. “Nucleon-meson” scattering,

iM = −ig2
[ 1
s−M2 + iε

+ 1
t−M2

]
.
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