
Quantum Field Theory I: PHYS 721
Problem Set 1: Solutions

Overview

This question illustrates why we need quantum field theory, and not just relativistic quan-
tum mechanics.

Question 1 [20]

One way of motivating the free-particle Schrödinger equation is to take the non-relativistic
dispersion relation E = ~p2/(2m) and to make the replacements,

E → i~
∂

∂t
, ~p→ −i~~∇ (1)

so that when the wavefunction ψ satisfies

i~
∂ψ

∂t
= − ~2

2m
~∇2ψ, (2)

it necessarily has the right energy-momentum relationship.

If we follow the same procedure for the relativistic dispersion relation, E2 = |~p|2 + m2 in
natural units, we get the free Klein-Gordon equation

− ∂2ψ

∂t2
= −(~∇2 −m2)ψ (3)

and we are tempted to identify ψ with the wavefunction of a single particle (as we did in
the Schrödinger case). Is this so bad?

Unfortunately this doesn’t work as a consistent theory–in this question we will start to
understand why.

The first mathematical issue is that the Klein-Gordon equation is second order in time
derivatives, while the Schrödinger equation is first order. This means we’ll need to specify
both the state of the quantum system and its rate of change at an initial time to get the
time-evolution. But suppose we brush this under the carpet. The second issue is that the
Klein-Gordon equation admits solutions of negative energy, Ep = ±

√
|~p|2 +m2. How do

we interpret them?
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Figure 1: Rectangular barrier used in Question 1(c).

(a) Show that the current, jµ = N(ψ∗∂µψ − ψ∂µψ∗), is conserved, so that ∂µjµ = 0, if ψ
and ψ∗ satisfy the Klein-Gordon equation, where N is an arbitrary constant normalisation.
Find N by insisting that the non-relativistic limit agree with the probability current of the
Schrödinger equation.

(b) We would like to identify j0 with the probability density. Show that for free-particle
solutions of the Klein-Gordon equation, ψ = ae−ik

µxµ and j0 = (Ek/m)|a|2. Notice that
the negative energy solutions have negative probability density! In general solutions of the
Klein-Gordon equation are not guaranteed to have positive probability density.

Suppose we brush this issue of negative probabilities under the carpet, too. Let’s see what
happens if we introduce “interactions” in the way we would in the Schrödinger equation,
by introducing a potential,

i
∂

∂t
→ i

∂

∂t
− V. (4)

Consider the rectangular barrier shown below, in Figure 1. For the rest of this question,
assume that we’re working in one spatial dimension.

(c) For positive energy waves of energy E incident from the left we have

p =
√
E2 −m2, p′ =

√
(E − V −m)(E − V +m). (5)

Using continuity of ψ and ∂ψ/∂x, show that the transmitted fraction is

|T |2 =
∣∣∣∣cos(ap′)− i

2

(
p

p′
+ p′

p

)
sin(ap′)

∣∣∣∣−2
. (6)

For (kinetic) energies above the barrier, E −m > V , p′ is real and |T | < 1, which corre-
sponds to some reflection of flux. This is in accord with non-relativistic intuition.

For energies below a relatively low barrier, E − m < V < E + m, p′ is imaginary and
we have tunnelling wavefunctions between x = 0 and x = a. This is also in accord with
non-relativistic intuition.
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For a very high barrier, we’d expect to continue to have tunnelling, but with an exponen-
tially decreasing amplitude. In fact we get something completely different: For V > E+m
(which implies V > E − m necessarily), p′ is real again, and we have propagating solu-
tions between x = 0 and x = a. The probability density in this region is also negative.
This is known as Klein’s paradox and it cannot be resolved without realising that the KG
equation is a field equation associated with an indefinite number of particles, and not a
single-particle wave equation.

Solution 1

(a) We assume that ψ and ψ∗ obey the Klein-Gordon equation, so that

(∂µ∂µ +m2)ψ = 0,
(∂µ∂µ +m2)ψ∗ = 0.

Now let’s calculate the divergence of the current jµ, which is

∂µj
µ = N∂µ (ψ∗∂µψ − ψ∂µψ∗)

= N ((∂µψ∗)∂µψ + ψ∗∂µ∂
µψ − (∂µψ)∂µψ∗ − ψ∂µ∂µψ∗)

= N (ψ∗∂µ∂µψ − ψ∂µ∂µψ∗) .

Now we can use the Klein-Gordon equations to write this as

∂µj
µ = N

(
−m2ψ∗ψ − (−m2)ψψ∗

)
= 0,

as required.

To find N , we need the Schrödinger current in natural units,

jiNR = − i

2m
(
ψ∗∇iψ − ψ∇iψ∗

)
. (7)

We choose the spatial components of our current to match the components of this nonrel-
ativistic current. Thus we have

N = i

2m, (8)

because ∂µ = (∂/∂t,−~∇).

(b) Let’s first show that ψ = ae−ik
µxµ satisfies the Klein-Gordon equation:

−∂
2ψ

∂t2
ae−ik

µxµ = − (−ik0)2ae−ik
µxµ

= E2ae−ik
µxµ

= (|~k|2 +m2)e−ikµxµ

= (−~∇2 +m2)e−ikµxµ .
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Now let’s calculate the corresponding current

j0 = i

2m

(
ψ∗

∂

∂t
ψ − ψ ∂

∂t
ψ∗
)

= i

2m (ψ∗(−iEk)ψ − ψ(iEk)ψ∗) = Ek
m
|ψ|2 = Ek

m
|a|2.

(c) The wavefunction ψ and the first derivative ∂ψ/∂x must both be continuous at x = 0
and x = a. Note that we are working in one spatial dimension! Continuity at x = 0
implies

1 +R = A+B, (9)
ip(1−R) = ip′(A−B), (10)

where the first equation comes from continuity of the wavefunction and the second from
the continuity of its derivative.

At x = a we have

Aeip
′a +Be−ip

′a = Teipa, (11)
ip′(Aeip′a −Beip′a) = ipTeipa. (12)

Now we can use Equations (9) and (10) to eliminate R, by multiplying Equation (9) by p
and then adding the result to Equation (10). This leads to

2p = (p+ p′)A+ (p− p′)B.

Rearranging this gives

A = 2
1 + p′/p

− 1− p′/p
1 + p′/p

B. (13)

We can now insert this (Equation (13)) into Equation (11) to obtain

T = Aei(p
′−p)a +Be−i(p

′+p)a = 2
1 + p′/p

ei(p
′−p)a +B

[
e−i(p

′+p) − 1− p′/p
1 + p′/p

ei(p
′−p)a

]
, (14)

where we’ve multiplied Equation (11) by e−ipa to obtain the first equality.

Applying similar logic to Equation (12), we find

p

p′
T = 2

1 + p′/p
ei(p

′−p)a −B
[
e−i(p

′+p) − 1− p′/p
1 + p′/p

ei(p
′−p)a

]
. (15)
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Let’s tidy this up a bit, by defining

λ− = e−i(p
′+p) − 1− p′/p

1 + p′/p
ei(p

′−p)a,

λ+ = e−i(p
′+p) − 1− p′/p

1 + p′/p
ei(p

′−p)a,

ρ = 2
1 + p′/p

ei(p
′−p)a.

With these definitions, we can write Equations (14) and (15) as

T − ρ = Bλ−, (16)
p

p′
T − ρ = −Bλ+. (17)

Dividing Equations (16) and (17) we obtain

T − ρ
p
p′T − ρ

= −λ−
λ+

.

Rearranging this gives
T − ρ = − p

p′
T
λ−
λ+

+ ρ
λ−
λ+

,

or
T

(
1 + p

p′
λ−
λ+

)
= ρ

(
1 + λ−

λ+

)
.

Multiplying by λ+ we finally find

T = ρ (λ+ + λ−)
λ+ + p

p′λ−
. (18)

This is actually the equation that we need. We just need to find the absolute value of this
(squared) to demonstrate the result stated in the question. But first we need to put it into
a more explicit form. First note that

λ+ + λ− = 2e−i(p+p′)a, (19)

and second that

λ+ + p

p′
λ− =

(
1 + p

p′

)
e−i(p

′+p)a +
1− p′

p

1 + p′

p

(
1− p

p′
ei(p

′+p)a
)
. (20)
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Substituting Equations (19) and (20) into Equation (18), we obtain

T = 2eia(p′−p)

1 + p′/p
· 2e−i(p+p′)a

(1 + p

p′

)
e−i(p

′+p)a +
1− p′

p

1 + p′

p

(
1− p

p′

)
ei(p

′+p)a

−1

= 4e−2iap
[(

1 + p′

p

)(
1 + p

p′

)
e−i(p

′+p)a +
(

1− p′

p

)(
1− p

p′

)
ei(p

′+p)a
]−1

= 4e−ipa
[(

2 + p′

p
+ p

p′

)
e−ip

′a +
(

2− p′

p
− p

p′

)
eip

′a
]−1

= 4e−iap
[
2
(
e−ip

′a + eip
′a
)

+
(
p′

p
+ p

p′

)(
e−ip

′a − eip′a
)]−1

= 4e−iap
[
4 cos(ap′) +

(
p′

p
+ p

p′

)
(−2i) sin(ap′)

]−1
.

Thus we finally, finally get to

|T |2 =
∣∣∣∣cos(ap′)−

(
p′

p
+ p

p′

)
i

2 sin(ap′)
∣∣∣∣−2

.
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