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Abstract

Qubit lattice algorithms consist of a sequence of interleaved unitary collision-stream oper-
ators which in the continuum limit recover the differential equations of interest. QLA can be
viewed as a generalized quantum random walk process. Some QLA simulations are presented
for scattering of an electromagnetic pulse from a localized dielectric object. Comments are made
on how to generalize QLA to handle dispersive and dissipative media as well as its application
to a magnetized plasma-Maxwell system.

1 Introduction

Qubit lattice algorithms (QLA) [1-23] can be viewed as a cousin of the more familiar lattice Boltz-
mann scheme (LB) [24] to solve classical physics problems computationally in a more efficient
manner than standard computational (CFD) codes. In particular LB algorithms for nonlinear
fluid systems achieved important status because of the simplicity of the code and their inherent
parallelization on classical supercomputers. In LB, the fluid equations are modeled by a trun-
cated kinetic description in which the permitted phase space velocity is minimized subject to
recovering the required fluid equations and retaining appropriate symmetries to leading order by
Chapman-Enskog expansions. An immediate advantage of the LB approach is that the notorious
computational headaches of resolving the nonlinear convective derivative for turbulent flows in the
momentum equation, v ·∇v, is now replaced by a simple linear kinetic advection (streaming) term
ξi · ∇fi(x, ξi, t). ξi define the chosen discrete phase space lattice velocities. The fluid nonlinearities
are recovered by incorporating quadratic algebraic nonlinearities into the LB collision operator.
The initial collision operator was of BGK form (fi − feqi )/τ . The relaxation distribution function
feqi is a function of the macroscopic variables, and τ is a relaxation time. The very early LB al-
gorithms were restricted to low Mach number and low Reynolds number flows. However a literal
explosion of research in LB has moved the field into mutlispeed-lattices, multiple relaxation times,
entropic LB, supersonic flows using adaptive space-time reference frame based on the actual local
fluid velocity and temperature [25-27]
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The QLA employs a non-commuting sequence of unitary collide-stream operators acting on a
chosen qubit basis set as a mesoscopic model that recovers the equations of interest in the continuum
limit. In the beginning, QLA’s were introduced for the solution of the Schrodinger equation [1-3].
For quantum entanglement one requires at least 2 qubits/lattice site. The four on-site basis kets
are

|0〉 ⊗ |0〉 = |1000〉, |0〉 ⊗ |1〉 = |0100〉, |1〉 ⊗ |0〉 = |0010〉, |1〉 ⊗ |1〉 = |0001〉. (1)

The unitary collision operator required to recover the kinetic energy operator in the Schrodinger
equation is just the square-root-of-swap gate

U1 =


1 0 0 0
0 (1− i)/2 (1 + i)/2 0
0 (1 + i)/2 (1− i)/2 0
0 0 0 1

 . (2)

It is convenient to work with the 2 × 2 sub-block, C, entangling the on-site qubits {q1, q2}. C2 is
just the standard swap gate on these 2 qubits,

C2

[
q1

q2

]
=

[
(1− i)/2 (1 + i)/2
(1 + i)/2 (1− i)/2

]2 [
q1

q2

]
=

[
q2

q1

]
(3)

while C4 = I, the identity operator.
The unitary streaming operator S1 simply shifts the amplitude of qubit q1 at lattice site x to

site x+ δ, while the transpose ST1 shifts q1 to lattice site x− δ. Similarly for the shift operator S2

acting on the qubit q2. The operators U and S do not commute.
If one considers the following sequence of non-commuting unitary interleaved collision-streaming

operators for a time advancement of ∆t for the qubits q1, q2:[
q1(t+ ∆t)
q2(t+ ∆t)

]
= ST2 .C.S2.C.S

T
2 .C.S2.C · ST1 .C.S1.C.S

T
1 .C.S1.C

[
q1(t)
q2(t)

]
(4)

one recovers the free Schrodinger equation for the x-dependent wave function ψ determined from the
zero moment of our mesoscopic qubit representation ψ(x, t) = q1(x, t)+q2(x, t). The error is O(δ2),
provided we have diffusion ordering, with ∆t = O(δ2). If one had performed just two collide-stream
operators on each qubit then the scheme would become just O(δ). By using the alternate-direction
implicit (ADI) scheme for the y-direction and z-direction independently, we recover the full 3D free
Schrodinger equation.

It is very interesting to realize that if the collide-stream operators commuted, then Eq. (4)
simply degenerates into the identity evolution:[

q1(t+ ∆t)
q2(t+ ∆t)

]
=

[
q1(t)
q2(t)

]
(5)

The non-commutation of the collide-stream operators is essential in our QLA in order to recover
the desired equations of interest.

The effect of the potential energy term in the Schrodinger equation is readily modeled in QLA
by the introduction of an external collision operator. In this way one can consider the scattering
of a wave packet from an external potential well, or the 1D Nonlinear Schrodinger equation (NLS),
or the 1D Korteweg-de Vries (KdV) equation. These last 2 problems are examples of nonlinear
physics - and this poses a stumbling block for immediate application onto a quantum computer
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which is based on linear operator theory alone. However, both 1D NLS and 1D KdV are exactly
soluble nonlinear equations – with solitons as solutions. In particular exact soliton-soliton collision
solution provided excellent benchmarking for our QLA on classical computers, on which there are
no problems handling the nonlinear terms.

We have extended QLA to both 2D and 3D NLS - now non-integrable equations that can
give a mean-field theory for the evolution of a ground-state Bose-Einstein condensate (BEC) wave
function. Very high precision QLA simulations were performed on quantum turbulence in these
systems and their further generalization to spinor BECs. We achieved these results because QLA
is ideally parallelized on classical supercomputers, with no degradation in parallel performance as
the number of cores are increased. In particular, on the IGM BlueGene Mira supercomputer at
Argonne, using OpenMP on a grid of 51203 we attained strong scaling of 94.1% as the number of
cores were increased from a base of 65, 536 to 524, 288 and achieving 1.17 PetaFlops (runs performed
in 2016).

In some sense, QLA can be viewed as an example of a quantum random walk process.

2 QLA for Plasma Physics

Recently we have turned our attention to QLA for electromagnetic wave propagation in plasmas.
Our approach has been to consider Maxwell equations and progressively include plasma effects
into the constitutive equations. Eventually this will move into including the plasma evolution
equations for mass, momentum and energy along with the evolution equations for the Maxwell
electromagnetic fields E,H. With constitutive equations (in a coordinate representation in which
the Hermitian tensor dielectric ε is diagonal) for an inhomogeneous non-magnetic medium

D = ε ·E, B = µ0H. (6)

the Maxwell equations can be written in a unitary representation on discerning the required Dyson
map [28] on a 6-qubit representation of the electromagnetic field,

U =
(
nxEx, nyEy, nzEz, µ

1/2
0 H

)T
= Q (7)

where the refractive indices {nx, ny, nz} = {ε1/2x , ε
1/2
y , ε

1/2
z }.

For 2D x-y spatially dependent fields and media, the unitary Maxwell equations take the form

∂q0

∂t
=

1

nx

∂q5

∂y
,

∂q1

∂t
= − 1

ny

∂q5

∂x
,

∂q2

∂t
=

1

nz

[
∂q4

∂x
− ∂q3

∂y

]
∂q3

∂t
= −∂(q2/nz)

∂y
,

∂q4

∂t
=
∂(q2/nz)

∂x
,

∂q5

∂t
= −∂(q1/ny)

∂x
+
∂(q0/nx)

∂y

(8)

where Q = {q0, q1, q2, q3, q4, q5}T . In Fig. 1 we present QLA simulations of scattering of a 1D
electromagnetic wave packet from a 2D elliptic dielectric cylinder.There are considerable number
of internal reflections/transmissions into the vacuum region since there is a sharp (but continuous)
spatial gradient in the refractive index near the boundary of the vacuum-dielectric region. In Fig
1a, we see the wave packet propagating in a diagonal direction and interacting with the dielectric
whose major axis is parallel to the wavefront. We are looking from above, so that the dielectric
region is shown in the middle of the figure. Since the refractive index within the dielectric, n2 = 2,
is greater than that in the vacuum, the phase velocity of the wave packet within the dielectric
is less than in the vacuum and so is retarded within the dielectric. One also sees the reflected
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wave packet from the first interaction of the wave packet with the dielectric. At a later time,
Fig. 1b, one sees a reflected wave packet back into the vacuum, a focusing of the wave packet
within the dielectric as it approached the dielectric-vacuum boundary as well as portions of the
wave packet in the vacuum affected by transmitted parts of the wave packet leaving the dielectric
region into the vacuum. In Fig 2a and 2b show the pronounced internal reflections/transmissions

Figure 1: Top down view of a wave packet interacting with an elliptic dielectric cylinder. (a) The
early stages of the reflected wave packet back into the vacuum as well as the penetration into
the dielectric; (b) A slightly later time showing a focussing of the packet towards the front of the
dielectric, and a well developed reflected pulse.

within the dielectric at even later times. It should be noted that QLA is an initial value algorithm.
There are no internal boundary conditions imposed at the vacuum-dielectric interface. There are
no Fresnel-like boundary conditions imposed, but the reflection and transmission wave fronts are
self-consistently generated in QLA.

Figure 2: Top down view (a) Significant first reflected pulse back into the vacuum with the first
reflected pulse within the dielectric and its transmission and constructive interference at the front
of the dielectric ; (b) more complex wave front structures of the electric field.
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2.1 QLA for Dispersive Media

The results presented here assumed the instantaneous (so-called ”optical”) response of the medium
to the given electromagnetic field u = {E,H}T . Dispersion can be included in the constitutive
equations by introducing the susceptibility kernel Ĝ [29]

d(r, t) = Ŵ (r)u(r, t) +

∫ t

0
Ĝ(r, t− τ)u(r, τ). (9)

Here d = {D,B}T , and Ŵ = diag(ε(r), µ0). It is convenient to move to the high frequency limit
in which the diagonal optical response reduces to that in a vacuum Ŵvac = diag(ε0, µ0). The
polarization of the medium is now incorporated into the integral kernel Ĝ. The QLA will be
unitary, but would now need to introduce extra qubits at each lattice site for the dynamics of the
polarization and the handling of integrals of the form∫ t

0

∫ ∞
−∞

e−iω(t−τ)

ω2
e − ω2

E(r, τ)dωd τ (10)

where ωe is a characteristic frequency of the medium.

2.2 QLA for Dissipative Media

The inclusion of dissipation into the plasma equations requires a fundamental change in the QLA
representation. One method is to employ the techniques of quantum information science (QIS)
when dealing with quantum system that interact with the environment. Such quantum systems
are termed ”open” systems since there is an energy exchange between it and the environment.
However by considering the extended system of the dissipative quantum system and its environment
one again recovers a closed system with energy conservation. This will then permit a unitary
representation for the extended system.

The non-unitary time evolution of the open system takes the form [29]

i
∂ψ

∂t
= [D̂0 − iD̂diss]ψ (11)

where D̂0 and D̂diss are Hermitian. iD̂diss is anti-Hermitian and represents the dissipation in the
system. Thus

ψ(∆t) = Û(∆t)ψ(0) = exp
{
−i∆t[D̂0 − iD̂diss]

}
ψ(0). (12)

A first crude approximation is to apply the zeroth order-Suzuki-Trotter decomposition to Eq. (12)

exp
{
−i∆t[D̂0 − iD̂diss]

}
= e−i∆tD̂0e−∆tD̂diss + O(∆t2), (13)

which neglects the effect of the non-commutation of D̂0 and D̂diss. This approximation, extremely
common in QIS, permits the treatment of the non-unitary operator exp[−∆tD̂diss] separately from
the unitary operator exp[−i∆tD̂0].

In QIS, one technique to handle the non-unitary operators is the introduction of Kraus operators
K̂µ for the evolution of the open system density matrix ρS

ρS(t) =
∑
µ

K̂µ ρS(0)K̂†µ. (14)
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The individual Kraus operators are arbitrary, but subject to the sum constraint be unitary:∑
µ

K̂†µK̂µ = I. (15)

By defining the Kraus operator K̂0

K̂0 = exp{−∆tD̂diss} (16)

and introducing a second Kraus operator K̂1 such that K̂†1K̂1 = I − K̂†0K̂0 one can extend to a
higher dimensional Hilbert space (which in QIS is called a dilation) in which the dilation operator
Ûdiss is unitary

Ûdiss =

[
K̂0 −K̂†1
K̂1 X̂ K̂0X̂

]
. (17)

The operator X̂ , is an appropriate extension of the Pauli X̂ operator to the appropriate dimension-
ality.

2.3 QLA for Plasma-Maxwell System

To develop a QLA to simulate directly the nonlinear two fluid plasma equations for mass, momen-
tum and energy is not at all straightforward. Extending the work of Meng & Yang [30], one may
utilize the Madelung transformation on the 3D NLS BEC equation (known in condensed matter at
the Gross-Pitaevskii equation) for the scalar wavefunction ψ:

ψ =
√
ρ eiφ. (18)

One can immediately identify ρ =
√
ψ∗ψ as the fluid density, and v = −∇φ as the fluid velocity.

The scalar BEC equation for ψ can be rewritten in the form of fluid conservation equation of mass,
momentum and energy, not unlike the compressible Navier-Stokes system. The major difference
between the quantum NLS equation and the classical Navier-Stokes system is the addition of an
extra quantum pressure term in the momentum equation and the fact that for scalar NLS quantum
vorticies are singular, with ρ→ 0 at the vortex core. A classical vortex, on the other hand is non-
singular. To remove these quantum irregularities, Meng & Yang achieve extra degrees of freedom
by moving to a quaternion representation of the qubit fields whose zeroth moment yields the wave
function, and thereby remove the quantum pressure term and singular vortices.

It seems very worthwhile to extend this approach to spinor BECs, with the Hamiltonian aug-
mented to incorporate the electromagnetic field. We already have very well benchmarked and
parallelized QLA’s for spinor BECs and separate QLA’s for Maxwell equations.
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