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Abstract

A qubit lattice algorithm (QLA) for normal incidence of an rectangular electromagnetic
pulse onto a dielectric slab is examined and shows that the transmission coefficient is indeed
augmented over the Fresnel boundary value infinite plane wave result by the square root of the
ratio of the refractive indices of the two media. For an oscillatory wave packet, this transmission
coefficient is further increased. As the QLA is not fully unitary, due to one evolution operator
being Hermitian, first steps are taken in correcting a similar problem of determining a fully
unitary QLA for the Korteweg- de Vries equation. This is achieved by appropriate perturbation
of the unitary collision angle.

1 Introduction

We have been investigating qubit lattice algorithms (QLA) for some time [1-20]. The aim of
QLA is to develop a unitary interleaved sequence of collision-streaming operators which in the
continuum limit reduces perturbatively to the desired differential equations describing the system
of interest. The first step is to associate a basis set of qubits for the lattice, which on taking
appropriate moments will recover the classical fields of interest. Some care is needed in making
this identification, as seen in considering QLA for Maxwell equations (see Sec. 2 for details: only
certain specific field bases can lead to unitary evolution). Quantum entanglement is essential if
one is developing an algorithm for quantum computers. In our QLA, we typically have the unitary
collision operator act on a qubit pair. We then can see immediately that QLA induces quantum
entanglement. Indeed, consider a two qubit system with 22 basis elements (|00〉, |01〉, |10〉, |11〉),
and a unitary 2× 2 collision operator

C =

[
cos θ sin θ
− sin θ cos θ

]
(1)

acting on the qubit subspace of (|01〉, |10〉). One of the post-collision qubit elements is
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cos θ |01〉+ sin θ |10〉.

Now this post-collision state cannot be represented by a tensor product of the 22 - basis, since the
most general tensor product state is

a0b0|00〉+ a0b1|01〉+ a1b0|10〉+ a1b1|11〉

for some coefficients a0 . . . b1. To eliminate the |00〉-term, one must set either a0 = 0 or b0 = 0.
This would eliminate either the state |01〉 or the state |10〉. States which cannot be represented in a
tensor product basis of qubits are called entangled states. A maximally entangled state is achieved
on taking θ = π/4, and is known as a Bell state [21]

B1 =
|01〉+ |10〉√
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In trying to develop a QLA for the propagation of an electromagnetic pulse in a dielectric media,
the QLA representation of Maxwell equations in 1 spatial dimension is typically more singular than
in 2D. In particular, if one wishes to consider electromagnetic scattering from dielectric objects one
must enquire into the thickness of the dielectric boundary layer to the length scale of the incident
electromagnetic pulse as this will play an important role in the development of some of the QLA
operators. This will be discussed at some length in Sec. 2. However, we will first discuss the choice
of qubit representations for some choices will not be able to lead to fully unitary QLAs.

In Sec. 3 we discuss the problem of developing a fully unitary QLA for Maxwell equations, and
consider some possible lines of attack by considering the QLA for the Korteweg-De Vries (KdV)
soliton. It turns out that our initial QLA for KdV [1] required the introduction of a potential
operator following the unitary collide-stream sequence of entangling the qubits and propagating
that entanglement throughout the lattice. In the QLA evolution equation for the qubits, this
potential operator is not unitary (it is Hermitian). In Sec 3 we shall develop new QLAs in which
the effect of this potential operator is obtained by perturbing the unitary collision operator - thereby
permitting a fully unitary QLA representation of the KdV equation.

2 QLA for Maxwell Equations

2.1 Qubit-Electromagnetic field representation

Consider a simple dielectric non-magnetic medium with the constitutive equations

D = εE, B = µ0H. (2)

Treating u = (E,H)T as the fundamental fields, and d = (D,B)T the derived fields , Eq. (2)
can be written in matrix form

d = Wu (3)

where W is a Hermitian 6× 6 matrix

W =

[
ε3×3 0

0 µ0I3×3

]
(4)

with I3×3 the 3 × 3 identity matrix. and T is the transpose operator. The curl-curl (source-free)
Maxwell equations ∇×E = −∂B/∂t, and ∇×H = ∂D/∂t are just
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i
∂d

∂t
= Mu (5)

where, under standard boundary conditions, the curl-matrix operator M is Hermitian

M =

[
03×3 i∇×
−i∇× 03×3

]
(6)

Since W is invertible, Eq. (5) can be written in terms of the basic electromagnetic fields u = (E,H)

i
∂u

∂t
= W−1Mu (7)

In continuum applications, one typically treats the two Maxwell divergence equations ∇·B = 0
and ∇ · D = 0 as initial conditions. From the curl-curl equations we see that they will then be
satisfied for all time.

2.1.1 homogeneous dielectric medium

If one is dealing with a homogeneous dielectric medium (e.g., a vacuum), then the constitutive
matrix W is a constant and trivially commutes with the curl-operator M. As a result, the product
of the two Hermitian matrices, W−1M is itself Hermitian, and Eq. (7) gives a unitary evolution
of the electromagnetic fields u = (E,H)T used as a basis for the qubit field.

2.1.2 inhomogeneous dielectric media

However, when the matrix W is spatiaily dependent, then W−1M 6= MW−1 and W−1M is not
Hermitian. Under these conditions, a qubit representation of the electromagnetic fields u = (E,H)T

will not yield a unitary evolution of these qubits. However Koukoutsis et. al. [24] have shown how
to determine the so-called Dyson map from the fields u to a new field representation U such that
the resultant representation in terms of the new field U will result in a unitary evolution of these
fields. Indeed, it can be shown [24], that the Dyson map

U = W1/2u (8)

will yield a unitary evolution equation for U with

i
∂U

∂t
= W−1/2MW−1/2U (9)

as the matrix operator W−1/2MW−1/2 is Hermitian.
Thus one could start to build a QLA based on the electromagnetic fields

U =
(
ε1/2E, µ

1/2
0 H

)T
(10)

or under the rotation matrix

L =
1√
2

[
I3×3 iI3×3
I3×3 −iI3×3

]
(11)

one could base a QLA on the field representation URSW = LU where
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URSW =
1√
2

[
ε1/2E + iµ

1/2
0 H

ε1/2E− iµ1/20 H

]
. (12)

This is nothing but the unitary evolution of the Riemann-Silberstein-Weber (RSW) vector - a
representation used to represent Maxwell equations from the early 1920’s [25-27]. The theory can
be readily extended to diagonal tensor dielectric media, with (assuming non-magnetic materials)
the 6-qubit representation Q of the field

U =
(
nxEx, nyEy, nzEz, µ

1/2
0 H

)T
= Q (13)

n is the vector (diagonal) refractive index, with εx = n2x ... and we work in Cartesian coordinates.

2.2 2D QLA for x− y dependent propagation of Maxwell Equations

From Eqs. (9) and (13), Maxwell equations for 2D x-y spatially dependent fields written in terms
of the 6-Q vector components

∂q0
∂t

=
1

nx

∂q5
∂y

,
∂q1
∂t

= − 1

ny

∂q5
∂x

,
∂q2
∂t

=
1

nz

[
∂q4
∂x
− ∂q3
∂y

]
∂q3
∂t

= −∂(q2/nz)

∂y
,

∂q4
∂t

=
∂(q2/nz)

∂x
,

∂q5
∂t

= −∂(q1/ny)

∂x
+
∂(q0/nx)

∂y

(14)

This representation is unitary.
One QLA representation focusses on recovering Eq. (14) perturbatively. One can thus consider

developing the representation dimension by dimension. In particular we introduce the following
unitary collision operator with collision angles θ1 and θ2 (to be specified later):

CX =



1 0 0 0 0 o
0 cos θ1 0 0 0 −sin θ1
0 0 cos θ2 0 −sin θ2 0
0 0 0 1 0 0
0 0 sin θ2 0 cos θ2 0
0 sin θ1 0 0 0 cos θ1

 (15)

and the unitary collision operator

CY =



cos θ0 0 0 0 0 sin θ0
0 1 0 0 0 0
0 0 cos θ2 0 sin θ2 0
0 0 −sin θ2 cos θ2 0 0
0 0 0 0 1 0

−sin θ0 0 0 0 0 cos θ0

 (16)

with collision angles θ0 and θ2. The unitary streaming operator S+x
14 shifts qubits q1 and q4 one

lattice unit in the +x direction, while leaving the remaining 4 qubits alone. We finally need to
introduce the (nonunitary) external potential operators

VX =



1 0 0 0 0 o
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −sin β2 0 cos β2 0
0 sin β0 0 0 0 cos β0

 (17)
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and

VY =



1 0 0 0 0 o
0 1 0 0 0 0
0 0 1 0 0 0
0 0 cos β3 sin β3 0 0
0 0 0 0 1 0

−sin β1 0 0 0 0 cos β1

 (18)

for particular angles β0, β1 and β2.
We now consider the following unitary sequence of interleaved collision-streaming operators:

UX = S+x
25 .C

†
X .S

−x
25 .CX .S

−x
14 .C

†
X .S

+x
14 .CX .S

−x
25 .CX .S

+x
25 .C

†
X .S

+x
14 .CX .S

−x
14 .C

†
X (19)

and
UY = S+y

25 .C
†
Y .S

−y
25 .CY .S

−y
03 .C

†
Y .S

+y
03 .CY .S

−y
25 .CY .S

+y
25 .C

†
Y .S

+y
03 .CY .S

−y
03 .C

†
Y (20)

with the discrete time advancement of the 6-qubit Q given by

Q(t+ δt) = VY .VX .UY.UX.Q(t) (21)

To recover the desired Maxwell equations (14) perturbatively, one introduces a small parameter
ε as the spatial lattice shift unit (assuming a square x− y lattice), and the unitary collision angles

θ0 =
ε

4nx
, θ1 =

ε

4ny
, θ2 =

ε

4nz
. (22)

Finally, the nonunitary external potential angles need to be defined as

β0 = ε2
∂ny/∂x

n2y
, β1 = ε2

∂nx/∂y

n2x
, β2 = ε2

∂nz/∂x

n2z
, β3 = ε2

∂nz/∂y

n2z
(23)

Indeed, using Mathematica to evaluate Eq. (21), one obtains in the continuum spatial limit the
desired Maxwell equations to errors of ε4

∂q0
∂t

= ε2δt
1

nx

∂q5
∂y

,
∂q1
∂t

= −ε2δt 1

ny

∂q5
∂x

,
∂q2
∂t

= ε2δt
1

nz

[
∂q4
∂x
− ∂q3
∂y

]
∂q3
∂t

= −ε2δt∂(q2/nz)

∂y
,

∂q4
∂t

= ε2δt
∂(q2/nz)

∂x
,

∂q5
∂t

= −ε2δt
(
∂(q1/ny)

∂x
+
∂(q0/nx)

∂y

) (24)

i.e., under diffusion ordering, ε2δt ≈ O(1), one recovers the continuum Maxwell equations to errors
O(ε2).

3 QLA for KdV without external non-unitary potential operators

The KdV equation is an important nonlinear equation and has been derived in considering the evo-
lution of shallow water waves. Interestingly, it [33] has also been associated with the FermiPasta-
Ulam-Tsingou simulations of the 1950’s which were undertaken computationally to study the ex-
pected equipartitionn of the system’s energy in set of coupled nonlinear oscillators. Instead, in the
parameter regime they considered, Fermi et. al. found recurrence of initial conditions. The general
KdV equation for arbitrary positive constants a and b

∂ψ

∂t
+ aψ

∂ψ

∂x
+ b

∂3ψ

∂x3
= 0
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is exactly integrable. One of its solutions is the right traveling soliton with speed c - a free
parameter

ψ(x, t) =
3c

a
sech2

(
1

2

√
c

b
[x− ct]

)
Since the KdV equation is a scalar equation for the real function ψ(x, t) one need only to

employ 2 qubits / lattice site. First we shall reconsider the QLA for KdV with the use of an
external potential to model the nonlinear term in KdV. The collision operator is nothing but Eq.
(1) with maximal entanglement angle θ = π/4. We denote the operator S0+ to be the streaming
operator that translates the qubit q0 one lattice unit in the +x-direction. To eliminate the 2
nd order spatial derivative one must choose the interleaved sequence of collision-stream unitary
operators carefully. In particular the following sequence will generate a second order QLA for the
KdV equation

Q(t+ ∆t) = Vpot · S0+C · S1−CT · S0−C · S1+CT · S0−CT · S1+C · S0+CT · S1−C ·Q(t)

where the 2-qubit function Q = (q0q1)
T , and the superscript T is the transpose operation. The

external potential Vpot is the Hermitian matrix

Vpot =

[
cosα − sinα
− sinα cosα

]
with α = ε3m[x].

In the continuum limit, one recovers

∂ψ

∂t
+ ε3

(
m[x] · ψ(x, t) +

1

2

∂3ψ

∂x3

)
= 0 +O

(
ε5
)

on defining ψ = q0+q1. With the choice of m[x] = ∂ψ/∂x we have a second order accurate QLA
for KdV. Note that the QLA of Eq. (26) is not fully unitary because of the non-unitary property
of the external potential operator Vpot .

3.1 Fully unitary QLAs for KdV

QLAs are not unique in recovering the desired physics models to second order accuracy. Here,
we will present two QLAs, both having the same unitary collision operator, but with different
streaming sequences on the two qubits. Indeed, using Mathematica, it can be shown that the
following QLA

Q(t+ ∆t) = S0−C1 · S0+C1 · S1+C1 · S1−CT
1 · S0−CT

1 · S0+CT
1 · S1+CT

1 · S1−C1 ·Q(t)

with unitary collision operator C1

C1 =

[
cosα1 sinα1

− sinα1 cosα1

]
with α1 = ε2m1[x].

leads in the continuum limit to

∂ψ1

∂t
+ ε3

(
4m[x] · ∂ψ1

∂x
+

1

2

∂3ψ1

∂x3

)
= 0 +O

(
ε5
)
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so that the choice of m[x] = ψ1 will recover KdV.
Another fully unitary QLA that recovers KdV has the following interleaved sequence of unitary

collision-streaming operators:

Q(t+ ∆t) = C1S0− · C1S1+ · C1S0− · C1S1+ · CT
1 S0+ · CT

1 S1− · CT
1 S0+ · CT

1 S1− ·Q(t)

C1 is the same collision operator as in Eq. (30), and in the continuum limit yields

∂ψ1

∂t
+ ε3

(
−4m[x] · ∂ψ1

∂x
+

1

2

∂3ψ1

∂x3

)
= 0 +O

(
ε5
)

so that the choice of m[x] = −ψ1 will recover a KdV.
The implementation of these fully unitary algorithms may not necessarily be straightforward as

the perturbation parameter ε introduced into the Mathematica algorithm requires a perturbation
in the collision angle of O

(
ε2
)
, Eq. (30), while the continuum limit has scaling proceeds as O

(
ε3
)
.

In previous QLA for nonlinear physics, the order of the function ψ controlled the ε-factor.

4 SUMMARY

The development of a fully unitary QLA for plasma physics [34-37] in particular is of considerable
interest as they are readily encodable on future error-correcting quantum computers. In developing
QLAs for plasma physics we have taken the tack of first concentrating on Maxwell equations in
dielectric media. Our current QLAs for Maxwell equations are not fully unitary. However, it has
been proven that there does exist a unitary representation for Maxwell equation in dielectric media
- and it is thus a question of determining that unitary representation. Our current QLAs have
employed a sequence of interleaved collide-stream unitary operators that recover in the continuum
limit the spatial and time derivatives on the electromagnetic fields (see, e,g, Eqs. (19) and (20)).
The derivative terms on the refractive index are currently recovered by introducing two potential
operators - one of them is unitary, but the other is Hermitizn.

Earlier, we tested the accuracy of the QLA representation by determining such a representation
for the KdV equation - particularly since the 2-collision problem has an exact theoretical solution
for all times, even during the transient times when the solitons overlap. However for QLA [1] one
needs only one potential operator following the interleaved sequence of unitary collision-streaming
operators, but that potential operator was Hermitian. In this paper, we have looked for QLAs that
will recover KdV but now totally unitary by incorporating a perturbation on the collision angle to
eliminate the need for the non-unitary potential operator. Two such QLAs are presented. Since the
non-unitary potential has exactly the same form for KdV as for Maxwell equations, it is hoped that
such an approach on augmenting the collision angle will lead to a fully unitary QLA for Maxwell
equations.

We have also presented here some more evidence that there is a fundamental difference between
the initial value to boundary value approach for electromagnetic field propagation at dielectric
interfaces. The standard textbook boundary value approach assumes the existence of infinite plane
waves at the interface - the incident, the transmitted and the reflected plane waves. From the
dielectric discontinuity, one recovers Fresnel conditions on the respective wavelengths, speeds and
amplitudes. No transients effects can be handled. As is well known from the Sommerfeld-Brillouinn
calculations that for an event there must be nothing and then something. Such an approach is found
in QLA where we launch an electromagnetic pulse and then solve the QLA representation of Maxwell
equations as an initial value problem. The mathematical expediency of a δ-function interface is
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replaced by a sharp but continuous dielectric boundary layer. There is no need for the introduction
of internal boundary conditions, and one can follow the transient effects of a spatially limited pulse.
While the QLA recovers all the Fresnel jump conditions - except that it predicts the transmitted to
incident electric fields be augmented by a factor of

√
n2/n1 over Fresnel. Earlier QLA simulations

worked with various single-maximum pulse geometries and many different dielectric n1 and n2.
Here we considered a rectangular pulse to facilitate an easy back of the envelope calculation of the
Poynting flux. QLA is found to conserve energy very accurately - even during that transient times
in which the pulse is overlapping the two regions. When one considers an oscillating finite-extent
wave packet, results indicate that the ratio of transmitted to incident fields is enhanced even more
than in the single-maximum pulse. This will be considered in a future paper.
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