Qubit Lattice Algorithms (QLA) 2D Electromagnetic Scattering from tensor dielectric objects

George Vahala, Physics, William \& Mary, Williamsburg, VA
Min Soe, Mathematics and Physical Sciences, Rogers State University, Claremore, OK
Linda Vahala, Electrical \& Computer Engineering, Old Dominion University, Norfolk, VA
Abhay K. Ram, Plasma Science and Fusion Center, MIT, Cambridge, MA
Efstratios Koukoutsis, National Technical University of Athens
Kyriakos Hizanidis, National Technical University of Athens

Fusion from Magnetic Confinement

- Sun : plasma flares - nuclear fusion (gravitational forces)
- EARTH : magnetic confinement

3 parameters (Lawson criteria) : density, temperature, confinement time

ITER: weight 23,000 tonnes

Vacuum vessel - heavier than Eiffel Tower

- particle motion in E, B - fields
- collective effects of plasma in E, B - fields

MAXWELL EQUATIONS

$$
\begin{gathered}
\nabla \times \overline{\mathrm{E}}=-\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}} \\
\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}} \\
\nabla \cdot \bar{D}=\rho \\
\nabla \cdot \overline{\mathrm{B}}=0
\end{gathered}
$$

Closure : constitutive equations describe the effects of the fields on the plasma medium self-consistently

$$
\begin{array}{ll}
& \overline{\mathrm{D}}=\epsilon \overline{\mathrm{E}} \\
\text { Simplest model: } & \overline{\mathrm{B}}=\mu \overline{\mathrm{H}} \\
& \overline{\mathrm{~J}}=\sigma \overline{\mathrm{E}}
\end{array}
$$

SOLUTION TECHNIQUE: (a) classical supercomputers - parallelization critical
(b) quantum computer -- unitary evolution on a qubit basis
(c) unitary algorithm but also ideal for classical supercomputers

QUANTUM ENTANGLEMENT

Classical

0 $\stackrel{+}{1}$
1

Qubit : $\left|q_{1}\right\rangle=a_{0}|0\rangle+a_{1}|1\rangle$
with $\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1$

- Quantum Parallelization

3 (classical) bit register
$000=" 0 "$
$001=" 1$ "
$010=" 2 "$
$011=" 3 "$
$100=$ " 4 "
101 = " 5 "
$110=$ " 6 "
$111=" 7 "$

A classical register can be in only ONE unique state, at any given time instant:
e.g., |011> = " 3 "

Qubit: $|q\rangle=a_{0}|0\rangle+a_{1}|1\rangle \quad$ with $\quad\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1$
Consider the 3-qubit state " $3 ":|011\rangle=|0\rangle \otimes|1\rangle \otimes|1\rangle$
Apply the Hadamard gate to each qubit :

$$
H|0\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \quad H|1\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

$H|0\rangle \otimes H|1\rangle \otimes H|1\rangle=\frac{" 0 "-" 1 "-" 2 "+" 3 "+" 4 "-" 5 "+" 6 "+" 7 "}{\sqrt{8}}$
i.e., we can create a quantum register in which we can simultaneously and independently store ALL 8 possible basis states at the same time instant.

Spin-1 BECs

3 coupled NLS eqs. $\quad \hat{\psi}=\left(\begin{array}{lll}\psi_{-1} & \psi_{0} & \psi_{1}\end{array}\right)^{T}$
$i \frac{\partial \hat{\psi}}{\partial t}=\left(-\nabla^{2}-\hat{\mu}+g \hat{\psi}^{\dagger} \hat{\psi}\right) \hat{\psi}+c_{1} \mathbf{F} \cdot f \hat{\psi} \equiv\left(\hat{\tau}+\hat{V}_{\text {diag }}\right) \hat{\psi}+c_{1} \hat{V}_{\text {nondiag }} \hat{\psi}$

- Time evolution :

$$
\hat{\psi}(\mathbf{x}, t+\delta t)=\operatorname{Exp}\left[-i\left(\hat{T}+\hat{V}_{\text {diag }}+c_{1} \hat{V}_{\text {nondiag }}\right) \delta t\right] \hat{\psi}(\mathbf{x}, t)
$$

Baker-Campbell-Hausdorff (lowest order) :
$\operatorname{Exp}\left[-i\left(\hat{H}_{\text {diag }}+\hat{V}_{\text {nondiag }}\right) \delta t\right]=\operatorname{Exp}\left[-\frac{i \hat{V}_{\text {nondiag }} \delta t}{2}\right] \operatorname{Exp}\left[-i \hat{H}_{\text {diag }} \delta t\right] \operatorname{Exp}\left[-\frac{i \hat{V}_{\text {nondiaa }} \delta t}{2}\right]+\ldots$. summable to all orders
$t=0: 12$ line Vortices/ m_{s}

Formation of Quantum loop vortices

m_{0}

Time	Probability	Unitarity	Energy
0	$2.394440388827002 \mathrm{E}-004$	$1.197220194913501 \mathrm{E}-004$	$2.399237643177138 \mathrm{E}-004$
1000	$2.3944038082502 \mathrm{E}-004$	$1.197220194910103 \mathrm{E}-004$	$2.399177921934308 \mathrm{E}-004$
3200	$2.394440225580082 \mathrm{E}-004$	$1.197220194905830 \mathrm{E}-004$	$2.399082131416646 \mathrm{E}-004$
4500	$2.394435073214831 \mathrm{E}-004$	$1.197220194903661 \mathrm{E}-004$	$2.399107356071618 \mathrm{E}-004$

QLA: fully unitary, 6 qubits/lattice node

Parallelization of	Table 2. Strong Scaling: Grid 9600^{3} to the full 48 racks			
on Classical	\#nodes	$\begin{aligned} & \text { Ranks } \\ & \text { - Mode C32 } \end{aligned}$	Time (s)	Speed-up [ideal]
Supercompute	16384	524288	816.1	1.0 [1.0]
	32768	1048576	389.7	2.1 [2.0]
(Mira) [2016]	49152	1572864	275.8	3.0 [3.0]

Fig. 14 Strong scaling of spinor BEC algorithm on Mira, using 2 MPI ranks/core with 16 cores/node (blue curve). The red dashed curve is ideal scaling up to the full 786432 cores available on Mira. The multiple MPI ranks/core gives the benefit of multiple instruction issue by multiple threads on the BG/Q chip while running the code in pure MPI mode.

Table 5. Strong Scaling, OpenMP Timings, Grid 5120 ${ }^{3}$ - to 32 racks

2D ELECTROMAGNETIC SCATTERING from TENSOR DIELECTRIC OBJECTS

6 qubits/lattice node

$$
\mathbf{U}=\left(n_{x} E_{x}, n_{y} E_{y}, n_{z} E_{z}, \mu_{0}^{1 / 2} \mathbf{H}\right)^{T} \equiv \mathbf{Q}
$$

Pde's

$$
\frac{\partial q_{0}}{\partial t}=\frac{1}{n_{x}} \frac{\partial q_{5}}{\partial y}, \quad \frac{\partial q_{1}}{\partial t}=-\frac{1}{n_{y}} \frac{\partial q_{5}}{\partial x}, \quad \frac{\partial q_{2}}{\partial t}=\frac{1}{n_{z}}\left[\frac{\partial q_{4}}{\partial x}-\frac{\partial q_{3}}{\partial y}\right]
$$

$$
\frac{\partial q_{3}}{\partial t}=-\frac{\partial\left(q_{2} / n_{z}\right)}{\partial y}, \quad \frac{\partial q_{4}}{\partial t}=\frac{\partial\left(q_{2} / n_{z}\right)}{\partial x}, \quad \frac{\partial q_{5}}{\partial t}=-\frac{\partial\left(q_{1} / n_{y}\right)}{\partial x}+\frac{\bar{\partial}\left(q_{0} / n_{x}\right)}{\partial y}
$$

C_{x} - Unitary Collision Operator forms 2-qubit entanglements
C_{Y} - Unitary Collision Operator forms 2-qubit entanglements

$$
C_{X}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \cos \theta_{1} & 0 & 0 & 0 & -\sin \theta_{1} \\
0 & 0 & \cos \theta_{2} & 0 & -\sin \theta_{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & \sin \theta_{2} & 0 & \cos \theta_{2} & 0 \\
0 & \sin \theta_{1} & 0 & 0 & 0 & \cos \theta_{1}
\end{array}\right] \text { Coupling } \mathrm{q} 1-\mathrm{q} 5 ~ 子 ~ प 2-\mathrm{q} 4
$$

$$
\widehat{C}_{Y}=\left[\begin{array}{cccccc}
\cos \theta_{0} & 0 & 0 & 0 & 0 & \sin \theta_{0} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \cos \theta_{2} & \sin \theta_{2} & 0 & 0 \\
0 & 0 & -\sin \theta_{2} & \cos \theta_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
-\sin \theta_{0} & 0 & 0 & 0 & 0 & \cos \theta_{0}
\end{array}\right] . \begin{array}{r}
\text { Coupling } \mathbf{q 0}-\mathrm{q5} \\
\mathrm{q} 2-\mathrm{q} 3 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \mathbf{U}_{\mathbf{X}}=S_{25}^{+x} \cdot C_{X}^{\dagger} \cdot S_{25}^{-x} \cdot C_{X} \cdot S_{14}^{-x} \cdot C_{X}^{\dagger} \cdot S_{14}^{+x} \cdot C_{X} \cdot S_{25}^{-x} \cdot C_{X} \cdot S_{25}^{+x} \cdot C_{X}^{\dagger} \cdot S_{14}^{+x} \cdot C_{X} \cdot S_{14}^{-x} \cdot C_{X}^{\dagger} \\
& \mathbf{U}_{\mathbf{Y}}=S_{25}^{+y} \cdot C_{Y}^{\dagger} \cdot S_{55}^{-y} \cdot C_{Y} \cdot S_{03}^{-y} \cdot C_{Y}^{\dagger} \cdot S_{03}^{+y} \cdot C_{Y}
\end{aligned} \cdot S_{25}^{-y} \cdot C_{Y} \cdot S_{25}^{+y} \cdot C_{Y}^{\dagger} \cdot S_{03}^{+y} \cdot C_{Y} \cdot S_{03}^{-y} \cdot C_{Y}^{\dagger}
$$

$$
\theta_{0}=\frac{\delta}{4 n_{x}}, \quad \theta_{1}=\frac{\delta}{4 n_{y}}, \quad \theta_{2}=\frac{\delta}{4 n_{z}},
$$

| Non-unitary | $V_{X}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -\sin \beta_{2} & 0 & \cos \beta_{2} & 0 \\ 0 & \sin \beta_{0} & 0 & 0 & 0 & \cos \beta_{0}\end{array}\right]$ |
| :--- | :--- | :--- |
| | $V_{Y}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \cos \beta_{3} & \sin \beta_{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ -\sin \beta_{1} & 0 & 0 & 0 & 0 & \cos \beta_{1}\end{array}\right]$ |

QLA : $\quad \mathbf{Q}(t+\Delta t)=V_{Y} \cdot V_{X} \cdot \mathbf{U}_{\mathbf{Y}} \cdot \mathbf{U}_{\mathbf{X}} \cdot \mathbf{Q}(t)$

$$
\beta_{0}=\delta^{2} \frac{\partial n_{y} / \partial x}{n_{y}^{2}}, \quad \beta_{1}=\delta^{2} \frac{\partial n_{x} / \partial y}{n_{x}^{2}}, \quad \beta_{2}=\delta^{2} \frac{\partial n_{z} / \partial x}{n_{z}^{2}}, \quad \beta_{3}=\delta^{2} \frac{\partial n_{z} / \partial y}{n_{z}^{2}}
$$

Can rewrite V_{X} and V_{Y} as a linear sum

 of unitary matrices (LCU method - Childs et. al.)$2^{\text {nd }}$ order accurate scheme under diffusion ordering, $\Delta t \approx \delta^{2}$.

- in principle QLA, as an initial value problem, could be run on an error-correcting qubit quantum computer.

Scattering of a 1D Electromagnetic Pulse off of scalar dielectric object:
 - dielectric cone
 - dielectric cylinder

Grid: 8192^{2}

No internal boundary conditions: initial value problem

Conservation of Energy

$$
\mathcal{E}(t)=\frac{1}{L^{2}} \int_{0}^{L} \int_{0}^{L} d x d y\left[n_{x}^{2} E_{x}^{2}+n_{y}^{2} E_{y}^{2}+n_{z}^{2} E_{z}^{2}+\mathbf{B}^{2}\right]=\frac{1}{L^{2}} \int_{0}^{L} \int_{0}^{L} d x d y \mathbf{Q} \cdot \mathbf{Q}
$$

$\begin{array}{ll}\text { (a) } \mathcal{E}(\mathrm{t}), \delta=0.3, & \text { (b) } \mathcal{E}(\mathrm{t}), \delta=0.1\end{array}$

Initial Value Problem, Gaussian wavepacket scattering from an
elliptical dielectric cyinder

Refractive index
$\mathrm{n}_{1}=1$
$n_{2}=2 \quad$ (ellipse)

\#1. PT - Hamiltonians (Bender 1998)

- Quantum Mechanics: real, bounded energy spectra of a system

$$
i \frac{\partial \psi}{\partial t}=\hat{H} \psi \quad \psi(\mathbf{x}, t)=\psi(\mathbf{x}) e^{-i E t} \quad \hat{H} \psi=E \psi
$$

- usual assumption: $\hat{H}=\hat{H}^{\dagger}$ - Hermitian Hamiltonian
- Bender (1998) : to recover real eigenvalues one does NOT need to assume Hermitian operator
- PT-symmetry can be sufficient. [P - parity, T - time reversal]

$$
\begin{gathered}
\hat{P} \psi(\mathbf{x}, t)=\psi(-\mathbf{x}, t) \quad \begin{array}{l}
\hat{T} \psi(\mathbf{x}, t)=\psi *(\mathbf{x},-t) \\
\text { anti-linear } \hat{T}(\lambda \psi)=\lambda * \hat{T} \psi
\end{array} \\
\hat{T} i=-i
\end{gathered}
$$

$$
\begin{aligned}
& \text { •PT-Symmetric Hamiltonian }[\hat{P} \hat{T}, \hat{H}]=0 \\
& \hat{H}(\varepsilon)=\hat{p}^{2}+\hat{x}^{2}(i x)^{\varepsilon} \\
& {[\hat{P}, \hat{H}] \neq 0 \text { but }[\hat{P} \hat{T}, \hat{H}]=0}
\end{aligned}
$$

FUTURE WORK

(1) QLA for scattering from 3D objects
(2) Tensor dielectric - dispersive, dissipative (collisional cold plasma)

- treat classical dissipative system as an "open-quantum" system : non-unitary system
- introduce appropriate Kraus operators
- treat the environment as a single qubit-system
(c.f., quantum amplitude channel for vector spontaneous emission)
- find the dilated Hilbert space in which the resultant dynamics is now unitary [Koukoutsis et. al., arXiv:2308.00056v1]
- develop QLA for this higher dimensional Hilbert space unitary systems
(3) Nonlinear 2 fluid equations + Maxwell : Madelung transformation on the GP BEC-equations - quaternions to eliminate quantum pressure terms, nonsingular classical vortices

Theory: Unitary Algorithm for Maxwell Equations in Anisotropic Dielectric Media

$$
\text { Basic Fields } \quad \mathbf{u}=(\mathbf{E}, \mathbf{H})^{\top}
$$

Derived Fields $\mathbf{d}=(\mathbf{D}, \mathbf{B})^{\top}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Constitutive } \\
\text { Equation }
\end{array} \\
& \\
& \\
& \rightarrow \mathbf{D}=\bar{\varepsilon}(\mathbf{d}) \cdot \mathbf{W} \mathbf{~} \mathbf{~}
\end{aligned}
$$

$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$,
$\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}$.

$$
\rightarrow \quad \text { Maxwell i.v.p } \quad i \frac{\partial \mathbf{d}}{\partial t}=\overline{\overline{\mathbf{M}}} \cdot \mathbf{u} \quad \text { with Hermitian operator } \quad \mathbf{M}=\left[\begin{array}{cc}
0_{3} & i \nabla \times \\
-i \nabla \times & 0_{3}
\end{array}\right]
$$

$$
\rightarrow \quad i \frac{\partial \mathbf{u}}{\partial t}=\overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}} \cdot \mathbf{u}
$$

- Homogeneous Media $\overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathrm{M}}}$ Is Hermitian $\Rightarrow\{\mathbf{u}\}$ - basis for a unitary representation.
- INHOMOGENEOUS MEDIA: $\overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}}$ is not Hermitian, since $\overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}} \neq \overline{\overline{\mathbf{M}}}^{-1}$

$$
\rightarrow\{\mathbf{u}\} \text { - basis will not yield a unitary repr. }
$$

$$
\mathbf{W}=\left[\begin{array}{cc}
\bar{\varepsilon}(\mathbf{x}) & 0_{3} \\
0_{3} & \mu_{0} I_{3}
\end{array}\right] .
$$

$$
\text { Consider map : u } \rightarrow \mathbf{U} \text { s.t } \quad \mathbf{U}=\overline{\bar{\rho}} \mathbf{u} \quad \text { with } \quad \overline{\bar{\rho}}=\overline{\overline{\mathbf{W}}}^{+1 / 2}
$$

$$
\begin{aligned}
& \rightarrow \quad i \frac{\partial \mathbf{u}}{\partial t}=\overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}} \cdot \mathbf{u} \\
& i \frac{\partial \rho \mathbf{u}}{\partial t}=\overline{\bar{\rho}} \overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}} \cdot \mathbf{u} \\
& =\overline{\bar{\rho}} \overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}}\left(\overline{\bar{\rho}}^{-1} \overline{\bar{\rho}}\right) \cdot \mathbf{u} \\
& =\left(\overline{\bar{\rho}} \overline{\overline{\mathbf{W}}}^{-1} \overline{\overline{\mathbf{M}}} \overline{\bar{\rho}}^{-1}\right) \overline{\bar{\rho}} \mathbf{u} \\
& \rightarrow \quad i \frac{\partial \mathbf{U}}{\partial t}=H_{D} \mathbf{U} \text {, but now } \mathrm{H}_{\mathrm{D}} \text { is Hermitian } \\
& \mathbf{U}=\left[\begin{array}{c}
\sqrt{\epsilon_{k}} E_{k} \\
\sqrt{\mu_{0}} H_{k}
\end{array}\right] \quad \begin{array}{l}
H_{D}=\overline{\bar{\rho}} \overline{\overline{\mathbf{W}}}{ }^{-1} \overline{\overline{\mathbf{M}}} \overline{\bar{\rho}}^{-1} \\
=\overline{\overline{\mathbf{W}}}^{-1 / 2} \overline{\overline{\mathbf{M}}} \overline{\overline{\mathbf{W}}}^{-1 / 2}
\end{array}
\end{aligned}
$$

