
Review ARticle
https://doi.org/10.1038/s41591-021-01614-0

1Department of Biomedical Informatics, Harvard University, Cambridge, MA, USA. 2Department of Computer Science, Stanford University, Stanford, CA, 
USA. 3Scripps Translational Science Institute, San Diego, CA, USA. 4These authors contributed equally: Pranav Rajpurkar, Emma Chen, Oishi Banerjee. 
✉e-mail: etopol@scripps.edu

In the years ahead, AI is poised to broadly reshape medicine. Just 
a few years since the first landmark demonstrations of medical AI 
algorithms that are able to detect disease from medical images at 

the level of experts1–4, the landscape of medical AI has matured con-
siderably. Today, the deployment of medical AI systems in routine 
clinical care presents an important yet largely unfulfilled opportu-
nity, as the medical AI community navigates the complex ethical, 
technical and human-centered challenges required for safe and 
effective translation.

In this review, we summarize major advances and highlight 
overarching trends, providing a concise overview of the state of 
medical AI. Our review is informed by our efforts over the past 2 
years, during which we tracked and shared recent developments in 
medical AI on a weekly basis (https://doctorpenguin.com). First, 
we summarize recent progress, highlighting studies that have rigor-
ously demonstrated the utility of medical AI systems. Second, we 
examine promising avenues for medical AI research in the form of 
novel data sources and discuss collaboration setups between AI and 
humans, which are more likely to reflect real medical practice than 
typical study designs that pit AI against humans. Finally, we discuss 
major challenges facing the field, including the technological limi-
tations of AI as it stands and ethical concerns about regulating AI 
systems, holding people accountable when AI error occurs, respect-
ing patient privacy and consent in data collection and safeguarding 
against the reinforcement of inequities (Fig. 1).

Recent progress in deployment of AI algorithms in 
medicine
Although AI systems have repeatedly been shown to be successful 
in a wide variety of retrospective medical studies, relatively few AI 
tools have been translated into medical practice5. Critics point out 
that AI systems may in practice be less helpful than retrospective 
data would suggest6; systems may be too slow or complicated to be 
useful in real medical settings7, or unforeseen complications may 
arise from the way in which humans and AIs interact8. Moreover, 
retrospective in silico datasets undergo extensive filtering and clean-
ing, which may make them less representative of real-world medi-
cal practice. Randomized controlled trials (RCTs) and prospective 
studies can bridge this gap between theory and practice, more 
rigorously demonstrating that AI models can have a quantifiable, 
positive impact when deployed in real healthcare settings. Recently, 

RCTs have tested the usefulness of AI systems in healthcare. In addi-
tion to accuracy, a variety of other metrics have been used to assess 
the utility of AI, providing a holistic view of its impact on medi-
cal systems9–13. For example, an RCT evaluating an AI system for 
managing insulin doses measured the amount of time patients spent 
within the target glucose range14; a study that evaluated a monitor-
ing system for intraoperative hypotension tracked the average dura-
tion of hypotension episodes15, while a system that flagged cases of 
intracranial hemorrhage for human review was judged by its reduc-
tion of turnaround time16. Recent guidelines, such as AI-specific 
extensions to the SPIRIT and CONSORT guidelines and upcom-
ing guidelines such as STARD-AI, may help standardize medical AI 
reporting, including clinical trials protocols and results, making it 
easier for the community to share findings and rigorously investi-
gate the usefulness of medical AI17,18.

In recent years, some AI tools have moved past testing to deploy-
ment, winning administrative support and clearing regulatory 
hurdles. The Center for Medicare and Medicaid Services, which 
approves public insurance reimbursement costs, has facilitated 
the adoption of AI in clinical settings by allowing reimbursement 
for the use of two specific AI systems for medical image diagno-
sis19. Furthermore, a 2020 study found that the US Food and Drug 
Administration (FDA) is approving AI, particularly machine learn-
ing (ML; a type of AI), products at an accelerating rate20. These 
advances largely take the form of FDA clearances, which require 
products to meet a lower regulatory bar than full-fledged approv-
als do, but they are nonetheless clearing a path for AI/ML sys-
tems to be used in real clinical settings. It is important to point 
out that the datasets used for these regulatory clearances are often 
made up of retrospective, single-institution data that are mostly 
unpublished and considered proprietary. To build trust in medi-
cal AI systems, stronger standards for reporting transparency and 
validation will be required, including demonstrations of impact on  
clinical outcomes.

Deep learning for interpretation of medical images. In recent 
years, deep learning, in which neural networks learn patterns 
directly from raw data, has achieved remarkable success in image 
classification. Medical AI research has consequently blossomed in 
specialties that rely heavily on the interpretation of images, such as 
radiology, pathology, gastroenterology and ophthalmology.
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AI systems have achieved considerable improvements in accu-
racy for radiology tasks, including mammography interpreta-
tion21,22, cardiac function assessment23,24 and lung cancer screening25, 
tackling not only diagnosis but also risk prediction and treatment26. 
For instance, one AI system was trained to estimate 3-year lung 
cancer risk from radiologists’ computed tomography (CT) readings 
and other clinical information27. These predictions could then be 
used to schedule follow-up CT scans for patients with cancer, aug-
menting current screening guidelines. Validation of such systems 
on multiple clinical sites and an increasing number of prospective 
evaluations have brought AI closer to being deployed and making a 
practical impact in the field of radiology.

In the field of pathology, AI has made major strides in diagnos-
ing cancers and providing new disease insights28–33, largely through 
the use of whole-slide imaging. Models have been able to efficiently 
identify areas of interest within slides, potentially speeding up 
workflows for diagnosis. Beyond this practical impact, deep neural 
networks have been trained to discern the primary tumor origin 
and detect structural variants or driver mutations, providing ben-
efits beyond even expert pathologist reviews. Furthermore, AI has 
been shown to make more accurate survival predictions for a wide 
range of cancer types compared to conventional grading and his-
topathological subtyping31. Such studies have demonstrated how 
AI can make pathology interpretations more efficient, accurate  
and useful.

Deep learning has also made progress in gastroenterology, 
especially in terms of improving colonoscopy, a key procedure 
used to detect colorectal cancer. Deep learning has been used to 
automatically predict whether colonic lesions are malignant, with  
performance comparable to skilled endoscopists34. Additionally, 
because polyps and other possible signs of disease are frequently 
missed during the exam35, AI systems have been developed to  
assist endoscopists. Such systems have been shown to improve 
endoscopists’ ability to detect irregularities, potentially improv-
ing sensitivity and making colonoscopy a more reliable tool  
for diagnosis10,11,36.

Deep learning models have been applied widely in the area 
of ophthalmology, making important advances toward deploy-
ment7,37–41. Besides quantifying model performance, studies have 
investigated the human impact of such models on health systems. 
For example, one study examined how an AI system for eye disease 
screening affected patient experience and medical workflows, using 
human observation and interviews7. Other studies have looked at 
the financial impact of AI in the ophthalmology setting, finding that 
semi-automated40 or fully automated AI screening39 might provide 
cost savings in specific contexts, such as the detection of diabetic 
retinopathy.

Opportunities for development of AI algorithms
Medical AI studies often follow a familiar pattern, tackling an image 
classification problem, using supervised learning on labeled data 
to train an AI system and then evaluating the system by compar-
ing it against human experts. Although such studies have achieved 
noteworthy advances, we present three other promising avenues 
of research that break from this mold (Fig. 2). First, we address 
non-image data sources such as text, chemical and genomic 
sequences, which can provide rich medical insights. Second, we 
discuss problem formulations that go beyond supervised learn-
ing, obtaining insights from unlabeled or otherwise imperfect data 
through paradigms such as unsupervised or semi-supervised learn-
ing. Finally, we look at AI systems that collaborate with humans 
instead of competing against them, which is a path toward achiev-
ing better performance than either AI or humans alone.

Medical data beyond images. Moving beyond image classifica-
tion, deep learning models can learn from many kinds of input 
data, including numbers, text or even combinations of input types. 
Recent work has drawn on a variety of rich data sources involving 
molecular information, natural language, medical signals such as 
electroencephalogram (EEG) data and multimodal data. The fol-
lowing is a summary of applications using these data sources.

AI has enabled recent advances in the area of biochemistry, 
improving understanding of the structure and behavior of biomol-
ecules42–45. The work of Senior et al. on AlphaFold represented a 
breakthrough in the key task of protein folding, which involves pre-
dicting the 3D structure of a protein from its chemical sequence42. 
Improvements in protein structure prediction can provide mecha-
nistic insight into a range of phenomena, such as drug–protein 
interactions or the effects of mutations. Alley et al. also made strides 
in the area of protein analysis, creating statistical summaries that 
capture key properties of proteins and help neural networks learn 
with less data43. By using such summaries rather than raw chemical 
sequences, models for downstream tasks like predicting molecular 
function may obtain high performance with much less labeled data.

AI has also made strides in the field of genomics, despite the 
complexity of modeling 3D genomic interactions. When applied 
to data on circulating cell-free DNA, AI has enabled noninvasive 
cancer detection, prognosis and tumor origin identification46–48. 
Deep learning has enhanced CRISPR-based gene editing efforts, 
helping to predict guide-RNA activity and identify anti-CRISPR 
protein families49,50. Additionally, AI-based analysis of microbial 
transcriptomic and genomic data has been used to quickly detect 
antibiotic resistance in pathogens. This advance allows doctors to 
rapidly select the most effective treatments, potentially reducing 
mortality and preventing the unnecessary use of broad-spectrum 
antibiotics51.

Furthermore, AI is now beginning to accelerate the process of 
drug discovery. Deep learning models for molecular analysis have 
been shown to accelerate the discovery of novel drugs by reducing 
the need for slower, more costly physical experiments. Such models 
have proven useful for predicting relevant physical properties such 
as the bioactivity or toxicity of potential drugs. One study used AI to 
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Fig. 1 | Overview of the progress, challenges and opportunities for AI in 
health. CMS, Centers for Medicare & Medicaid Services.
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identify a drug that was subsequently proven to be effective at fight-
ing antibiotic-resistant bacteria in experimental models52. Another 
drug designed by AI was shown to inhibit DDR1 (a receptor 
implicated in several diseases, including fibrosis) in experimental 
models; remarkably, it was discovered in only 21 days and experi-
mentally tested in 46 days, dramatically accelerating a process that 
usually takes several years53. Importantly, deep learning models can 
select effective molecules that differ from existing drugs in clini-
cally meaningful ways, thereby opening novel pathways for treat-
ment and providing new tools in the fight against drug-resistant 
pathogens.

Recent research has exploited the availability of large medical 
text datasets for healthcare-related natural language processing 
tasks, taking advantage of technical advances like transformers and 
contextual word embeddings (two technologies that help models 
consider surrounding context when interpreting each part of a text). 
One study presented BioBERT, a model trained on a large corpus of 
medical texts that surpassed prior state-of-the-art performance on 
natural language tasks like answering biomedical questions54. Such 
models have been used to improve performance on tasks such as 
learning from biomedical literature which drugs are known to inter-
act with each other55 or automatically labeling radiology reports56. 
Sizable text datasets have also been mined from social media and 
used to track large-scale mental health trends57. Thus, advances in 
natural language processing have opened up a wealth of new data-
sets and AI opportunities, although major limitations still exist due 
to the difficulty of extracting information from long text sequences.

Additionally, ML methods have been used to predict outcomes 
from medical signal data, such as EEG58, electrocardiogram59,60 and 
audio data61. For example, ML applied to EEG signals from clini-
cally unresponsive patients with brain injuries allowed the detec-
tion of brain activity, a predictor of eventual recovery58. Moreover, 
AI’s ability to directly transform brain waves to speech or text has 
remarkable potential value for patients with aphasia or locked-in 
syndrome who have had strokes62. Medical signal data can also be 
passively collected outside a clinical setting in the real world by 
using wearable sensors such as smartwatches that enable remote 
health monitoring59,63.

Some deep learning models integrate multiple sources of medi-
cal data for a multimodal approach64–68. For instance, one model for 
diagnosing respiratory disorders took audio recordings of patients’ 
coughs as well as reports of their symptoms as input65. Multimodal 
models have also taken advantage of far more complex inputs, such 
as electronic health records, which encompass a wide variety of data 
such as medical diagnoses, vital signs, prescriptions and labora-
tory results66,67. Such models can make predictions based on diverse 
types of data, much as human clinicians rely on multiple types of 
information when making decisions in practice. Despite its poten-
tial, this area of research seems relatively underdeveloped, in part 
because of the challenges of gathering multiple types of data consis-

tently across departments or institutions. We nonetheless expect to 
see the use of multimodal models increase over time.

AI setups beyond supervised learning. In addition to using novel 
data sources, recent studies have tried unconventional problem 
formulations. Conventionally, datasets derive inputs and labels 
from real data, and models like neural networks are used to learn 
functions mapping from inputs to labels. However, because label-
ing can be expensive and time-consuming, datasets containing 
both accurate inputs and labels are often difficult to obtain and are 
frequently reused across many studies. Other paradigms, includ-
ing unsupervised learning (specifically self-supervised learning), 
semi-supervised learning, causal inference and reinforcement 
learning (Box 1), have been used to tackle problems in which data 
are unlabeled or otherwise noisy. These advances have pushed the 
boundary of medical AI, enhancing existing technologies and deep-
ening the understanding of diseases.

Unsupervised learning, which involves learning from data with-
out any labels, has provided actionable insights, allowing models to 
find novel patterns and categories rather than being limited to exist-
ing labels, as in the supervised paradigm69–73,74. For example, cluster-
ing algorithms, which organize unlabeled data points by grouping 
similar data points together, have been applied to conditions such 
as sepsis, breast cancer and endometriosis, identifying clinically 
meaningful patient subgroups29,74,75,76. These categories can reveal 
novel patterns in disease manifestation that may eventually help to 
determine diagnosis, prognosis and treatment.

Other formulations rely on extracting information out of noisy or 
otherwise imperfect data, dramatically reducing the cost of data col-
lection30,77. As an example, Campanella et al. trained a weakly super-
vised model to diagnose several types of cancer from whole-slide 
images, using only the final diagnoses as labels and skipping the 
pixel-wise annotation expected in a supervised learning setup. 
With this approach, they were able to achieve excellent classifica-
tion results, even with annotation costs lowered30. Unconventional 
problem formulations have also been used to enhance and recon-
struct images78–81. For instance, when creating a model to enhance 
spatial detail in low-quality magnetic resonance imaging (MRI) 
images, Masutani et al. synthetically generated input data; they 
took high-quality MRI images, randomly added noise and then 
trained a convolutional neural network (a type of neural network 
commonly used for image data) to recover the original high-quality 
MRI images from their simulated ‘low-quality’ inputs80. Such for-
mulations allow researchers to leverage large datasets, despite their 
imperfections, to train high-performing models.

Setups beyond human versus AI. Although the majority of studies 
have focused on a head-to-head comparison of AI with humans82, 
real-life medical practice is more likely to involve human-in-the-loop 
setups, where in humans actively collaborate with AI systems and 
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Fig. 2 | Opportunities for the development of AI algorithms.
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provide oversight83,84. Thus, recent studies have begun to explore 
such collaborative setups between AI and humans. These setups 
typically feature humans receiving assistance from AI, although 
occasionally AI and humans work separately and have their pre-
dictions averaged or otherwise combined afterward. Multiple stud-
ies on a variety of tasks have shown that clinical experts and AI in 
combination achieve better performance than experts alone21,85–89. 
For example, Sim et al. found that AI-assisted clinical experts 
surpassed both humans and AI alone when detecting malignant 
nodules on chest radiographs85. The usefulness of human–AI col-
laboration will likely depend on the specifics of the task and the  
clinical context.

There are still open questions about exactly how AI assistance 
affects human performance. For instance, AI assistance has some-
times been shown to improve clinical experts’ sensitivity while low-
ering their specificity8,86, and some studies, both prospective and 
retrospective, have found that combined AI–human performance 
could not surpass the performance of AI alone90,91. Furthermore, 
some clinicians may benefit more from AI assistance than others; 
studies suggest that less experienced clinicians, such as trainees, 
benefit more from AI input than their more experienced peers8,92.

Technical considerations also play a major role in determining 
the effectiveness of AI assistance. Predictably, the accuracy of AI 
advice can affect its usefulness, so incorrect predictions have been 
found to hinder clinician performance even if correct predictions 
prove helpful8. Additionally, AI predictions can be communicated 
in multiple ways, appearing, for example, as probabilities, text rec-
ommendations or images edited to highlight areas of interest. The 
presentation format of AI assistance has been shown to affect its 
helpfulness to human users90,91, so future work on optimizing medi-
cal AI assistance may draw on existing research on human–com-
puter interactions.

Challenges for the future of the field
Despite striking advances, the field of medical AI faces major tech-
nical challenges, particularly in terms of building user trust in AI 
systems and composing training datasets. Questions also remain 
about the regulation of AI in medicine and the ways in which AI 
may shift and create responsibilities throughout the healthcare sys-
tem, affecting researchers, physicians and patients alike. Finally, 
there exist important ethical concerns about data use and equity in 
medical AI (Fig. 3).

Implementation challenges. Dataset limitations. Medical AI data 
often raise specific, practical challenges. Although it is hoped that 
AI will reduce medical costs, the devices required to obtain the 
inputs for AI systems can be prohibitively expensive. Specifically, 
the equipment needed to capture images of whole slides is costly 
and is therefore unavailable in many health systems, impeding both 
data collection for and deployment of AI systems for pathology.

Additional concerns arise from large image sizes, because the 
amount of memory required by a neural network can increase with 
both the complexity of the model and the number of pixels in the 
input. As a result, many medical images, especially whole-slide 
images, which can easily contain billions of pixels each, are too large 
to fit into the average neural network. There exist many ways to 
address this issue. Pictures may be resized at the expense of fine 
details, or they may be split into multiple small patches, although 
this will hinder the system’s ability to draw connections between 
different areas of the image. In other cases, humans may identify a 
smaller region of interest, such as part of a slide image that contains 
a tumor, and crop the image before feeding it into an AI system, 
though this intervention adds a manual step into what might oth-
erwise be a fully automated workflow32,93. Some studies use large 
custom models that can accept whole medical images, but running 
these models can require expensive hardware with more mem-
ory. Thus, systems for medical image classification often involve 
trade-offs to make inputs compatible with neural networks.

Another issue affecting images as well as many other types of 
medical data is a shortage of the labels required for supervised learn-
ing94. Labels are often hand-assigned by medical experts, but this 
approach can prove difficult due to dataset size, time constraints 
or shortage of expertise. In other cases, labels can be provided by 
non-expert humans, for example, via crowdsourcing. However, 
such labels may be less accurate, and crowdsourced labeling proj-
ects face complications associated with privacy, as the data must be 
shared with many labelers. Labels can also be applied by other AI 
models, as in some weak-supervision setups95, but these labels again 
carry the risk of noise. Currently, the difficulty of obtaining quality 
labels is a major blockade for supervised learning projects, driving 
interest in platforms that make labeling more efficient and weakly 
supervised and unsupervised setups that require less labeling effort.

Problems also arise when technological factors lead to bias in 
datasets. For example, single-source bias occurs when a single sys-
tem generates an entire dataset, as when all the images in a collec-
tion come from a single camera with fixed settings. Models that 
exhibit single-source bias may underperform on inputs collected 
from other sources. To improve generalization, models can undergo 
site-specific training to adapt to the specific quirks of each place 
they are deployed, and they can also be trained and validated on 
datasets collected from different sources94,96. However, the latter 
approach must be undertaken with care, especially when the distri-
bution of labels differs dramatically across datasets. For instance, if 
a model is trained on datasets from two institutions, one containing 
only positive cases and one containing only negative cases, then it 
can achieve high performance through spurious ‘shortcuts’ with-
out learning about the relevant pathology. An image classification 
model might thus base its predictions entirely on the differences 
between the two institutions’ cameras; such a model would likely 
learn nothing about the underlying disease and fail to generalize 
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Fig. 3 | Ethical challenges for AI in medicine.
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elsewhere. We therefore encourage researchers to be wary of tech-
nological bias, even when using data from diverse sources97.

Building model trust. A variety of qualities are desired for an AI sys-
tem to garner user trust. For example, it is useful for AI systems 
to be reliable, convenient to use and easy to integrate into clinical 
workflows98. AI systems can be packaged with easy-to-read instruc-
tions, explaining how and when they should be used; it may be help-
ful for such user manuals to be standardized across systems99.

Explainability is another key aspect of earning trust, as it is 
easier to buy into an AI system’s predictions when the system can 
explain how it reached its conclusions. Because many AI systems 
currently function as uninterpretable ‘black boxes’, explaining their 
predictions poses a serious technical challenge. Some methods for 
explaining AI predictions exist, such as saliency methods that high-
light regions of an image that most contribute to a prediction of a 
disease by a model. However, these methods may not be reliable100, 
and further research is necessary to interpret AI decision-making 
processes, quantify their reliability and convey those interpreta-
tions clearly to human audiences101. In addition to building trust 
among users, enhanced explainability will allow developers to check 
models more thoroughly for errors and verify to what degree AI 
decision-making mirrors expert human approaches102. Moreover, 
when medical AI models achieve novel insights that go beyond 
current human knowledge, improved explainability may help 
researchers grasp those new insights and thus better understand the 
biological mechanisms behind disease.

Perhaps the most obvious component of trustworthiness is 
accuracy, because users are unlikely to trust a model that has not 
been rigorously shown to give correct predictions. Additionally, 
trustworthy AI studies should be reproducible, so that repeat-
edly training a model with a given dataset and protocol pro-
duces consistent results. Studies should also be replicable, so that 
models perform consistently even when trained with different 
samples of data. Unfortunately, proving the reproducibility and rep-
licability of AI studies raises unique challenges. Datasets, code and 
trained models are often not released publicly, making it difficult  
for the wider AI community to independently verify and build on 
previous results103,104.

Accountability. Regulatory challenges. Recent work highlights reg-
ulatory issues regarding the deployment of AI models for health-
care. Beyond accuracy, regulators can look at a variety of criteria to 
evaluate models. For example, they may require validation studies 
showing that AI systems are robust and generalizable across clini-
cal settings and patient populations and ensure that systems protect 
patient privacy. Additionally, because the usefulness of AI systems 
can depend heavily on how humans provide input and interpret 
output, regulators may require testing of human factors and ade-
quate training for the human users of medical AI systems105.

Specific regulatory challenges arise from continual learning, 
where models learn from new data over time and adjust to shifts 
in patient populations, as this may come at the risk of overwriting 
previously learned patterns or otherwise causing new mistakes106. 
Traditionally, regulators of AI systems approve only one locked set 
of parameters, yet this approach does not account for the necessity 
to update models, as data evolve due to changes in patient popula-
tions, data collection tools and care management. Regulators must 
therefore develop novel certification processes to handle such sys-
tems. Importantly, the FDA has recently proposed a framework for 
adaptive AI systems in which they would approve not only an initial 
model but also a process for updating it over time107.

Shifts in responsibility. Although AI systems have the potential to 
empower humans in medical decision-making, they also run the 
risk of limiting personal autonomy and creating new obligations. As 
AI systems take on more responsibilities in the healthcare setting, 
a concern facing the system is that clinicians may become overly 
reliant on AI, perhaps seeing a gradual decline in their own skills 
or personal connections with patients. In turn, medical AI devel-
opers may gain outsized influence on healthcare and should thus 
be obliged to create safe, useful AI systems and responsibly influ-
ence public views on health. As medical decision-making becomes 
more reliant on potentially unexplained AI judgments, individual 
patients might lose some understanding of, or control over, their 
own care. Patients might at the same time gain new responsibilities 
as AI makes healthcare more pervasive in daily life. As an example, 
if smart devices provide patients with constant advice, then those 
patients may be expected to follow those recommendations or else 
be responsible for negative health outcomes108.

The proliferation of AI also raises concerns around accountabil-
ity, as it is currently unclear whether developers, regulators, sellers 
or healthcare providers should be held accountable if a model makes 
mistakes even after being thoroughly clinically validated. Currently, 
doctors are held liable when they deviate from the standard of 
care and patient injury occurs. If doctors are generally skeptical of 
medical AI, then individual doctors may be adversely influenced 
to ignore AI recommendations that conflict with standard practice, 
even if those recommendations may be personalized and beneficial 
for a specific patient. However, if the standard of care shifts so that 
doctors routinely use AI tools, then there will be a strong medicole-
gal incentive for doctors to follow AI recommendations109.

Fairness. Ethical data use. There are concerns that bad actors inter-
ested in identity theft and other misconduct might take advantage 
of medical datasets, which often contain large amounts of sensitive 
information about real patients. Decentralizing data storage is one 
way to reduce the potential damage of any individual hack or data 
leak. The process of federated learning facilitates such decentral-
ization while also making it easier to collaborate across institutions 
without complicated data-sharing agreements (Fig. 4). When using 
federated learning, developers send AI models to different institu-
tions that have private datasets; the institutions train the models on 
their data and send back model updates without ever sharing the 
data110. However, even after models are trained, there remains the 
risk that AI systems will face privacy attacks, which can sometimes 
reconstruct original data points used in training just by examining 
the resulting model. Patient data can be better protected from such 
attacks if inputs are encrypted before training, but this approach 
comes at the cost of model interpretability111.

Looking beyond such bad-faith attacks, there are other ques-
tions about how to respect patients’ privacy. Sensitive data should 
typically be collected and used in research with patient consent and, 
where practical, anonymization and aggregation strategies should 
be used to obscure personal details. It is necessary to ensure that any 
institutions working with patient data handle them responsibly, for 

Box 1 | AI setups beyond supervised learning

Self-supervised learning Learning from unlabeled data by 
leveraging information extracted from 
the data itself

Semi-supervised learning Learning from a small amount of 
labeled data combined with a large 
amount of unlabeled data

Causal inference Finding the effect of a component or 
treatment on a system using data

Reinforcement learning Learning in an interactive environment 
using feedback from actions and past 
experiences
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example, by using appropriate security protocols. At the same time, 
it is also important that patient data be used for the good of patients. 
Out of respect for the patients who have agreed to share their per-
sonal information, patient data ideally would be used for research 
that promotes future patient well-being. Unfortunately, these goals 
can sometimes conflict with each other; implementing security 
measures like federated learning can require considerable resources 
and effort, and institutions that cannot make those investments 
may be unable to access certain datasets, even when their research 
would benefit the patients in question. Additionally, reusing data 
across projects may make it more difficult to obtain informed con-
sent, because patients allured by one study may be hesitant to join  
others. We hope and expect the AI community will continue 
exploring these trade-offs and find new ways to balance a variety  
of patient interests110.

Equity and bias. AI can make healthcare more accessible to under-
served groups, but it also risks reinforcing existing inequities, because 
AI models can perpetuate biases lurking in the data112. Medical AI 
systems can fail to generalize to new kinds of data they were not 
trained on; thus, training on datasets that underrepresent marginal-
ized groups is well known to result in biased systems that underper-
form on those groups. Systems that explicitly factor race into their 
predictions are also at risk of perpetuating prejudice, because racial 
categories are difficult to define and obscure the diversity within 
racial groups113. Bias can creep in due to other design choices, 
such as the choice of target label. For example, a risk-assessment 
algorithm used to guide clinical decision-making for 200 million 
patients was found to give racially biased predictions, such that 
white patients assigned a certain predicted risk score tended to be 
healthier than Black patients with the same score. This bias was due 
in large part to the original labels used in training. The system was 
trained to predict future healthcare costs, but because Black patients 
had historically received less expensive care than white patients due 
to existing systematic biases, the system reproduced those racial 
biases in its predictions114. Extensive research is necessary to detect 
and correct bias in medical AI models, because bias can cause  

widespread harm to marginalized groups if left unchecked. In the 
future, AI tools may systematically undergo special testing before 
deployment to verify that neural networks serve the well-being of 
marginalized populations equitably. Additionally, it may become 
easier to identify dangerous bias if model explainability improves, 
because human monitors will be able to double check the reasoning 
of AI systems and identify problematic elements115.

Conclusion
The field of medical AI has made considerable progress toward 
large-scale deployment, especially through prospective studies 
such as RCTs and through medical image analysis, yet medical AI 
remains in an early phase of validation and implementation. To 
date, a limited number of studies have used external validation, pro-
spective evaluation and diverse metrics to explore the full impact 
of AI in real clinical settings, and the range of assessed use cases 
has been relatively narrow. Although the field requires more test-
ing and practical solutions, there is also a need for bold imagina-
tion. AI has proven capable of extracting insights from unexpected 
sources and drawing connections that humans would not normally 
anticipate, so we hope to see even more creative, out-of-the-box 
approaches to medical AI. There are rich opportunities for novel 
AI research involving non-image data types and unconventional 
problem formulations, which open a broader array of possible data-
sets. Opportunities also exist in AI–human collaboration, an alter-
native to the AI-versus-human competitions common in research; 
we would like to see collaborative setups receive more study, as  
they may provide better results than either AI or humans alone and 
are more likely to reflect real medical practice. Despite the poten-
tial of the field, major technical and ethical questions remain for 
medical AI. As these pivotal issues are systematically addressed, 
the potential of AI to markedly improve the future of medicine  
may be realized.
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