Physics 101H

General Physics 1 - Honors

Motion through a medium

Summary

Topics

Friday: Newton's laws [chapter 5]

Solving problems (AKA a flipped classroom)

Today: in-medium motion [chapter 6]

- Motion through a medium
- Models of resistance:
 - Linear and quadratic

Announcements

Wednesday: No problem set assigned

Practice exam posted

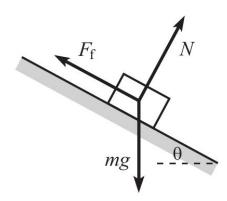
Thursday: Quiz 4

Next Wednesday: Midterm 1

Practice in pairs

Instructions: Discuss the following question with a neighbour. Your answers will not be graded; your discussion is for your own learning*.

Question: A block is at rest on a plane inclined at angle θ . The forces on it are the gravitational, normal, and friction forces (not drawn to scale!). Which of the following statements is always true, for any θ ?


(a)
$$mg \le N$$
 and $mg \le F_f$

(b)
$$mg \ge N$$
 and $mg \ge F_f$

(c)
$$F_f = \Lambda$$

(d)
$$F_f + N = mg$$

(e)
$$F_f > N$$
 if $\mu_s > 1$

Motion through a medium

Many of our examples specify "frictionless" planes and pulleys and so on

But real objects experience friction when moving through a medium

- For example: air drag or viscosity
- Resistive force due to the medium
- Opposes the relative motion of the object and the medium
- Magnitude of the resistive force depends on the relative speed, possibly in some complicated (nonlinear) way

Motion through a medium

Resistance model

At low speeds, we can approximate the resistive force as linear in the speed

Leads to terminal velocity - constant velocity at which the projectile travels

At higher speeds, we can model the resistive force as quadratic in the speed

Linear resistance model

Quadratic resistance model

Summary

Quiz 4 will cover:

Forces

Newton's laws

Inertial and noninertial reference frames

Four multiple choice questions

Topics

Today: in-medium motion [chapter 6]

- Motion through a medium
- Models of resistance:
 - Linear and quadratic

Wednesday: Work [chapter 7]

- Work done
- Constant force
- Varying force

Announcements

Wednesday: No problem set assigned

Practice exam posted

Thursday:

Quiz 4

Next Wednesday: Midterm 1

PHYSICS 101 - HONORS

Lecture 15 9/25/23

Linear resistance model (slide 5) Te-bū Va,ū tve y! Mg Assure R = - bv 10 notion with air resistance Fs + R = Ma Fret = ZFi = Fs + R = Fs - bv mg-bv=ma in y direction $a = S - \frac{b}{m} v = -\frac{b}{m} \left(v - \frac{mg}{b}\right)$ This is an ordinary differential equation (ODE) $\frac{dv}{dt} = -\frac{b}{m}\left(v - \frac{ms}{b}\right) = \int \frac{dv}{v - \frac{ms}{b}} = -\frac{b}{m}\int dt$ fdx = hx ln(v-ms) = -b+c exp[h(v-mg)] = exp[-bt+c] v = mg = De-bt/m 1 define D=e-c just author arbitrary $V = De^{-bt/m} + mg$ $= De^{-bt/m} + mg$ $= Ma (1 + Ae^{-bt/m})$ $= Ma (1 + Ae^{-bt/m})$ => V(E) = mg (1 + Ae - b+/m)

Let's try to determine A, assuring some boundary anditions. Let's assume that at t=0, v=0. Then

$$V = 0 \Rightarrow V(t = 0) = \frac{mg}{b}(1 + Ae^{-b \cdot 9m}) = 0$$

or $\frac{mg}{b}(1 + A) = 0 \Rightarrow 1 + A = 0$
because $\frac{mg}{b} \neq 0$

So
$$A = -1$$

=> $v(t) = mg(1 - e^{-5t/m})$

Note that as
$$t \rightarrow \infty$$

 $V(t \rightarrow \infty) \rightarrow MS(1 - e^{-b\infty/n}) = MS$
 $\rightarrow 0$

Velocity tudes to a constant, called the terminal velocity

Quadratic resistance model (stide 7)

Take
$$R = -\frac{1}{2}DeAv^2\hat{V}$$

Take $R = -\frac{1}{2}DeAv^2\hat{V}$

area of projectile astiparallel drag density of to \hat{V}

coefficient medium

Now we have
$$\overline{F}_5 + \overline{R} = M\overline{q}$$

In 1D $Mg - DeAv^2 = Ma$

Terminal velocity requires a = 0

$$=) Mg - \frac{De}{2} Av^2 = 0$$

$$v^2 = \frac{2Mg}{DeA}$$

$$=) V_T = \frac{2Mg}{DeA}$$

But what about the full ODF? mdv = mg - DeA v2

This is much more complicated, but we can solve it. In 2D, it gets much more interesting! We will revisit Mis in a problem set soon!

Place example (stide 3)

Parallel: mgsind - Ff = 0

Perpendialer: N-Mg cost = 0

> N = mg cos d => N & mg because cos d &1

and $F_f = M g s in 9$

If $\theta = 0$ => $F_f = 0$ => (c) is using! $\theta = 90$ => $F_f = Mg$ "> (e) is wory!

(a) is wrong

Nok (d) => sin 0 + cos 0 = 1 which is work!