Physics 101H General Physics 1 – Honors

Lecture 5 – 9/8/22 1D motion

Summary

Topics

Today: vectors [chapter 2]

- Products

Kinematics in 1D [chapter 3]

- Describing motion in 1D
- Position, velocity, acceleration

Announcements Yesterday: Problem set 1 assigned

In on dimensional kinematics, vectors are distinguished from scalars by having a direction that is denoted by positive or negative values.

The boiling point of nitrogen is -195.795 C. Is temperature a vector or a scalar quantity?

Cartesian and other coordinates

In **two dimensions**

- **Cartesian coordinates** defined by (x,y) axes
- **Polar coordinates** defined by magnitude and angle (r, θ)

In three dimensions

- **Cartesian coordinates** defined by (x,y,z) axes
- **Spherical coordinates** defined by magnitude and two angles (r, θ, ϕ)
- **Cylindrical coordinates** defined by radius, one angle and one height (r, θ, z)

Products of vectors

Dot product (or **scalar product**) of two vectors gives a number

Cross product (vector product) of two vectors can be thought of as giving another vector

Want more practice?

Check out the following problems in the <u>textbook</u>

In Chapter 2:

- Conceptual questions: 5, 13, 21
- Problems: 25, 31, 45, 53, 65, **91**

×	Search this book	Q	A	
•	 A fluid ounce is about 30 mL. What is the volume of a 12 fl-oz can of soda pop in cubic meters? 1.4 Dimensional Analysis 			
	50. A student is trying to remember some formulas from geometry. In what follows, assume A is area, V is volume, and all other variables are lengths. Determine which formulas are dimensionally consistent. (a) $r_{r}^{2}h$; (b) $A = 2\pi r^{2} + 2\pi rh$; (c) $V = 0.5bh$; (d) $V = \pi d^{2}$; (e) $V = \pi d^{3}/6$.			
	51. Consider the physical quantities <i>s</i> , <i>v</i> , <i>a</i> , and <i>t</i> with dimensions $[s] = L$, $[v] = LT^{-1}$, $[a] = LT^{-2}$, and $[t] = T$ Determine whether each of the following equations is dimensionally consistent. (a) $v^2 = 2as$; (b) $v = vt^2 + 0.5at^2$; (c) $v = s/t$; (d) $a = v/t$.			
	52. Consider the physical quantities m , s , v , a , and t with dimensions $[m] = M$, $[s] = L$, $[v] = L^{-1}$, $[a] = L^{-2}$, and $[f] = T$. Assuming each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the equation: (a) $F = ma$; (b) $K = 0.5mv^2$; (c) $p = mv$; (d) $W = mas$; (e) $L = mv$.			
	53. Suppose quantity <i>s</i> is a length and quantity <i>t</i> is a time. Suppose t <i>ds/dt</i> and <i>a</i> = <i>dv/dt</i> . (a) What is the dimension of <i>v</i> ? (b) What is the dir dimensions of (c) $\int vdt$, (d) $\int adt$, and (e) <i>da/dt</i> ?			
n	54. Suppose [V] = L ³ , [ρ] = ML ⁻³ , and [t] = T. (a) What is the dimensional dimens	ion of $\int ho dV?$ (b) Wha	at is the	
	dimension of dV/dt ? (c) What is the dimension of $\rho(dV/dt)$?			
	55. The arc length formula says the length <i>s</i> of arc subtended by angle equation $s = r\Theta$. What are the dimensions of (a) <i>s</i> , (b) <i>r</i> , and (c) Θ ?	e Θ in a circle of radius	r is given by the	
	1.5 Estimates and Fermi Calculations			
	56. Assuming the human body is made primarily of water, estimate the	e volume of a person.		

Note that answers are provided for questions with **blue** numbers (odd numbered) Click on the number to be taken to the answer.

But make sure you at least try the problem first!

Chapter 3

Kinematics is the description of the motion of objects

Dynamics is the explanation of the cause of the motion of objects

We will start with kinematics in one dimension (1D)

We are chiefly concerned with the **position** of an object **as a function of time**

Question: What is the difference between distance and displacement?

Position, displacement, and distance

Position – vector describing where object is relative to some reference frame

Displacement – change in position [a vector]

Distance travelled - total length of journey [a scalar]

Velocity – a vector describing the rate of change of position

Speed - the magnitude of the velocity [a scalar]

Instantaneous velocity – the time derivative of position

Acceleration

Acceleration – a vector describing the rate of change of velocity

Instantaneous acceleration - the time derivative of velocity

Example: The position of a particle as a function of time is given by x(t) = sin(t). Find the instantaneous velocity and acceleration as a function of time. Determine the average velocity and average acceleration over the period t = 0 to t = 2π .

Free fall

Question: Why do we have to specify "near the Earth's surface" in our definition of free fall?

Constant acceleration is a special case that we will revisit regularly

Free fall (falling under the influence of gravity and no other forces) is a special case of the special case of constant acceleration

In the absence of air resistance, all objects dropped near the Earth's surface fall with a constant acceleration (g), directed towards the Earth

When is Problem Set 1 due? And how do you submit it?

Vectors [chapter 2]

- Scalar products determine the projection of one vector on another
- Vector products produce a vector perpendicular to the original two vectors

Kinematics in 1D [chapter 3]

- Quantities characterising motion can be scalars or vectors
- Distance and speed are scalars
- Displacement, velocity, and acceleration are vectors
- Instantaneous and average velocity and acceleration are different!

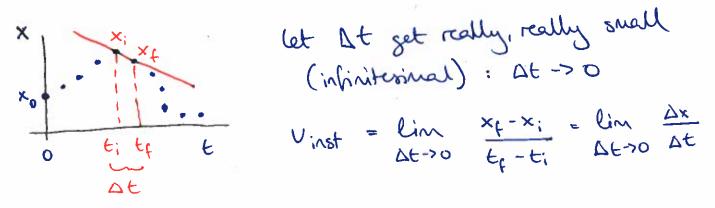
Tomorrow: kinematics in 2D

- Describing motion in 2D
- Generalising position, velocity, and acceleration to 2D

Polar coordinates Physics 101 - nonors $\overline{a} = \frac{1}{\sqrt{2}} (r, \theta) \qquad r = |\overline{a}| = \sqrt{x^2 + y^2}$ $\overline{b} = \frac{1}{\sqrt{2}} \qquad \overline{b} = \frac{1}{\sqrt{2}} \qquad \overline{b} = \frac{1}{\sqrt{2}}$ $x = r \cos \theta \qquad y = r \sin \theta$ Lecture 5 9/8/22 Scalar product (slide 4) Deroted ā.5 and given by ā.5 = Tālībi cos 2 205 In coordinate/ component form a.5 = a, b, + a, by + a, b, $\overline{a} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k})$ Maps two vectors to a scalar $\overline{b} = (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$ If a is perpendicular to 5 ther a. 5 = 1a/15/ as 90° = 0 Gives up the component of a pointed in the direction of 5 Vector product (slide 5) Devoted ax 5 - gives another vertor with regnitude 12×51 = 12/15/ sin 9 and direction perpendicular to Soth ax5 Jo Ja Not commutative axb + 5xa N.B. cross product of parallel vectors is zero! $\bar{a} \times \bar{a} = |\bar{a}||\bar{a}| \sin \theta$ - Ο And $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$

$$\frac{\text{Vector product (slide 6)}}{\overline{a} \times \overline{b}} = \left| \begin{array}{cc} \hat{1} & \hat{j} & \hat{h} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{array} \right| = \hat{1} \left(a_{y} b_{z} - a_{z} b_{y} \right) \\ - \hat{j} \left(a_{x} b_{z} - a_{z} b_{x} \right) \\ + \hat{h} \left(a_{x} b_{y} - a_{y} b_{x} \right) \right|$$

Position, displacement and distance (slide 9)


Velocity (slide 10) Measur a object's position at two times, subtract, then divide by the elapsed

$$V_{ave} = \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

Velocity can be positive or negative => vector with m/s speed is magnitude of velocity => scalar

Instantaneons velocity (slide 11)

Let's say that we can neasure the position of an object over shorter and shorter time intervals

In other words Vinst = $\frac{dx}{dt}$? Time derivative of the position function x(t)slope of the position vs line graph

Acceleration (slide 12)

$$a_{ave} = \frac{V_F - V_i}{t_f - t_i} = \frac{\Delta v}{\Delta t} \quad \leftarrow \text{ units } m/s^2$$

Let $\Delta t \rightarrow 0$ $a_{inst} = \lim_{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$ \leftarrow tence derivative of velocity.
But $v_{inst} = \frac{dv}{dt} \Rightarrow a_{inst} = \frac{d}{dt} (\frac{dx}{dt}) = \frac{d^2x}{dt^2}$ \leftarrow second time derivative
of position

Acceleration example

$$v(t) = \frac{d}{dt}x(t) = \frac{d}{dt}sin(t) = cos(t)$$

a(t) = $\frac{d}{dt}v(t) = \frac{d}{dt}cos(t) = -sin(t)$
dt dt

$$V_{ave} = \frac{x_{f} - x_{i}}{t_{f} - t_{i}} = \frac{\sin(0) - \sin(2\pi)}{2\pi - 0} = 0$$

$$a_{ave} = \frac{V_{f} - V_{i}}{t_{f} - t_{i}} = \frac{us(0) - us(2\pi)}{2\pi - 0} = 0$$

Constant acceleration (suide 14) $a = \frac{dv}{dt} = constant (= a_0)$ Note that $v(t) = at + v_0$ is exactly the right hind of function ! $\Lambda \frac{d}{dt}v(t) = a_0 \vee$ This can be obtained by integrating our equation $\frac{dw}{dt} = a_0$ $\int \frac{dv}{dt} \frac{dt}{dt} = \int a_0 \frac{dt}{dt} = a_0 \int \frac{dt}{dt} = \int a_0 \frac{dt}{dt} = \int \frac{dt}{dt}$

Constant anderation (slide 15)

$$V(t) = \frac{dx}{dt} = a_{t} + v_{o} = x(t) = \frac{1}{2}a_{o}t^{2} + v_{o}t + x_{o}$$

 $\frac{dt}{dt} + \frac{1}{1}$
 $\frac{1}{acceleration}$ obtained by integrating
 $\int dt dt = a_{o}\int t dt + v_{o}\int dt$
 $\int dt = a_{o}\int t dt + v_{o}\int dt$

$$V(E) = V_0$$

ò

Pg ~

Free fall (stide 16)
$$|a_0| = g \in acceleration due to gravity g = 9.81 M/s^2$$

towards the Earth

$$q + ve \qquad \alpha = -9$$

$$v(e) = -gt + v_0$$

$$- y(e) = -\frac{1}{2}gt + v_0t + y_0$$